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ABSTRACT

The stress fields in the components of a unidirectional composite due
to shrinkage and external loads are computed for 20 matrix/reinforcement
combinations having various volumetric contents. Further, the load trans-
missions between loaded and unloaded fibers are formulated as three-
dimensional elasticity solutions. The instability problem of a composite
is treated by both the static and the energy method, resulting in critical
loads and buckling wavelengths which depend on material constants and

geometries. The theoretical results are in good agreement with experiments.

The work reported herein encompasses the following principal areas:

1. Parametric studies (internal stresses and displacements com-
puted for unidirectional composites composited of different
combinations of matrices and reinforcements and different
volumetric contents)

2. Three-dimensional load transfer among loaded and unloaded
fibers in a matrix

3. Buckling of fibers in a matrix under axial load as an elas-
ticity solution

4. Buckling of fibers in a matrix under axial load, solved with
the Ritz-Galerkin method

5. Buckling of fibers in a matrix due to matrix shrinkage
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FOREWORD

This report was prepared by Whittaker Corporation, Narmco Research &
Development Division, San Diego, California, under USAAVLABS Contract DA 44-
177-AMC-441(T), entitled "Investigation of Micromechanical Behavior of Fiber
Reinforced Plastics," for the U. §. Army Aviation Materiel Laboratories,
Fort Eustis, Virginia. The work was administered by Mr. R. P. McKinnon,
Contracting Officer.

This report covers the period from 14 June 1966 through 14 March 1967,

Work on this project was carried out at Narmco under the overall direc-
tion of Dr. Juan Haener. Principal investigators also include Messrs. Noel
Ashbaugh, Chuen-Yuan Chia, and Ming-Yuan Feng. The program was
administered by Mr, Boris Levenetz, Assistant Manager of Narmco's Engineering
Department.
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CHAPTER 1

INTRODUCT ION

The strength-to-weight efficiency of composite materials such as glass
reinforced plastics has been demonstrated, through both theoretical and ;
experimental investigations, to be superior to that of present-day metallic .
materials. While the application of these materials to airframe structures ﬂ
obviously would be beneficial, their practical utilization has been limited Q
because reliable structural data have not yet been developed, and because
the micromechanical influence of the composite constituents, along with
their failure initiation and crack propagation, has not been fully under-
stood.

During the performance of Contract DA 44-177-AMC-208(T),* mathematical
relationships were derived for a single fiber embedded in a resin cylinder
for the case of static loading with general (mathematical) boundary con~-
ditions. These relationships were later extended®* to encompass the uni-
directional multifiber composite subjected to forces of thermal contraction
during the cure cycle, as well as to external loads.

This report describes a continuation of these efforts to define the
mechanical behavior of fiber reinforced plastic composites in order that
optimized materials and structural concepts can be developed for airframe
components of US Army aircraft. Work was devoted to the following areas:

1. 1Internal stresses and displacements for unidirectional com-
posites composed of different matrix/reinforcement combinations
having different volumetric contents

2. Three-dimensional load transfer amcng loaded and unloaded
fibers in a matrix

3. Buckling of fibers in a matrix under axial load as an elas-
ticity solution

4., Buckling of fibers in a matrix under axial load, solved with
the Ritz-Galerkin method

5. Buckling of fibers in a matrix due to matrix shrinkage

% See USAAVLABS Technical Report 65-58.
**% Contract DA 44-177-AMC-320(T); USAAVLABS Technical Report 66-62,
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CHAPTER 2

SUMMARY OF RESULTS

The three-dimensional analysis of a multifiber composite, such as that
depicted in Figure 1,

=0

Figure 1. General Arrangement of a
Multifiber Composite

reveals stresses which may not be easily anticipated by simple reasoning.
For instance, under an external compression load in the direction of the
fibers, a tensile stress is generated perpendicular to the fiber at ¢ = 0°
and becomes compressive at ¢ = 30°. For the tension case, these stresses
are reversed. Therefore, radial tension will exist in the bond regardless
of the direction of the axial load. For a 200,000-psi axial load, for
example, these stresses are between 2000 and 4000% psi and, therefore, a
weakening of the bond between fiber and resin occurs.

One would expect the shrinkage stresses in the resin to be universally
tensile; in the radial direction of the interface, however, these stresses
are compressive where the fibers are closer together (¢ = 0°), and are ten-
sile where the fibers are further apart.

One would expect the stress in the fiber direction due to resin shrink-
age to be compressive. However, in high-density fiber composites, part of

* In a 64% glass reinforced epoxy composite.
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this stress in the fiber is tensile due to Poisson's effect and the high
radial compressive stress where the fibers were closer together. This stress
seems to increase stability in closely packed composites. In an irregularly
packed composite, it would tend to prebuckle the reinforcement.

i s

The instability soliution indicates that the force required to buckle a
fiber in a multifiber composite is much higher than expected based on
simpler analyses. One would be tempted to conclude that a densely packed
composite fails under loads other than buckling.

The buckling wavelength was also an outcome of this investigation. It
is remarkable that the wavelength obtained from an analysis with interfacial
shear taken into account and an analysis where no interfacial shear was con-
sidered yield very similar results. From this, one might conclude that the
buckling wavelength in a composite is independent of the interfacial shear.
By comparing the two instability analyses, however, the buckling force was
found to be very dependent on the interfacial shear.

In general, the results of the parametric studies and the instability
analysis complement each other, leading to the same conclusions.

On the basis of the stresses computed during this program, it has
been determined that a composite loaded in compression can have a higher
fiber density than one loaded in tension. -
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CHAPTER 3

ANALYTICAL WORK

PART I — PARAMETRIC STUDIES

This study was made in order to investigate the stress, strain, and
displacement fields in the fiber and matrix for composites under external
and residual shrinkage loads. The following parameters were varied: fiber
and matrix modulus, fiber radius, fiber length, and fiber volumetric content.
Combinations of the above parameters were picked in order to provide data on
some presently used fiber and resin materials in composites. From the
analytical work, a computer program was written in order to obtain stress,
strain, and displacement values in the composite. A discussion of the
analytical work and the computer program is given in Appendix I.

In general, the objectives were to predict the weaknesses in a compos-
ite which would be created by residual shrinkage loads and external loading,
and, if possible, to deduce simplified equations for the pertinent stress,
strain, or displaceuent fields. Figures 2 through 28 demonstrate that these
curves could be fitted by fairly simple equations which are functions of,
say, ¢ or z , but to include the stress level in such simplified equations
and determine how it varies as a function of fiber and resin modulus and of
Poisson's ratio- and fiber volumetric content proved to be very difficult.

Table I shows the various parametric combinations which were chosen in
the study. The cases in Table I are comparable to boron/epoxy and E-glass/
epoxy composites under residual shrinkage and external loading. The elastic
moduli of boron and E-glass were taken as 60 x 10°psi and 10 x 10®psi,
respectively. The epoxy modulus was varied for the E-glass case to obtain
more pronounced effects on the field values than would be obtained for the
boron epoxy cases.

The length of the boron fibers were varied to see what effects would
result from the long and short boron fibers. The values for the fiber
volumetric content were picked to include tvplcal composite values (VI =
64% and 70%) and high fiber density packing (VI = 80%). The radius of the
E-glass fiber was varied because the E-glass flber is made with varlous
radii, while boron fiber has a typical radius of 2 mils. Poisson's ratios
for all cases were 0.2 for the fiber and 0.35 for the epoxy.

Stress, strain, and displacement fields were obtained for each case.
The most revealing effects, however, occurred in the stress fields. Since
it is also experimentally possible to measure the stresses, the study con-
centrated on the changes in the stress field due to variation of the param-
eters. From the computer results, the maximum and minimum values of the
six stresses occurred at the fiber-resin interface. The stresses shown in
the figures are therefore the stress at the interface, r = a . Thus, these
stresses provide an indication of possible weaknesses and areas of failure
in a composite.
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TABLE I

CASES USED FOR THE PARAMETRIC STUDY

Parameters
Fiber General Fiber Fiber Epoxy F‘:;Zir
Modulus, State of Radius, Ler}gth, Modsulu.s, Content,
10° psi Stress® 102 4in. in. 10° psi %
60 S 2 3 0.38 64
70
80
0.5 64
10.0
L 3
70
75
’ 80
10 S 2.5 64
70
| 80
1 1.0 64
\ 5.0 0.38
L
70
80
1.0 64
' 5.0 1.0 64
* 8§ = resin shrinkage which includes both cure shrinkage and

differential thermal contraction.

=
]

constant load applied at the ends on the resin.
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Also, the computer results indicate that the stress field away from the
ends of the fiber has little dependence on the 2z coordinate. In Figures 2
through 7, then, the stresses which are not plotted as functions of z/4
can be considered as constant away from the fiber ends with respect to the
z coordinate.

Residual Shrinkage Load

From the cases shown in Table I, the effects of changing the following
parameters can be investigated for the residual shrinkage load. In all
these cases, the fiber shrinkage was zero and the resin shrinkage was 1%.

1. Changes in the Combinations of Fibers and Resin Modulus at Vf = 0.64

The three combinations of fiber and resin moduli are shown in Table II.

TABLE II

COMBINATIONS OF FIBER AND RESIN MODULI

_15:1(106 psi) 60 10 10

EuuoB psi) 0.38 0.38 1.0

The change from a fiber modulus of 60 x 10fpsi to 10 X 10spsi did not
have much effect on the shrinkage stresses. However, changing the resin
I1
11 °

modulus from 0.38 x 10fpsi to 1 x 10Ppsi increased the stresses, G{I y O
and 0;; , by a factor of 1 divided by 0.38. In other words, when the ratio

of resin to fiber moduli is small, the change of residual stresses, 0}1,

cii , and c§§ , 1s proportional to the change in resin modulus. See Fig-

ures 2 and 3. Three other stresses, 0{2 s gi; , and g;z , are shown in
Figures 4 and 5.

Figures 6 and 7 indicate a possible *20% variation in the axial re-
sidual stress in both the resin and the fiber.

2. Changes in the Fiber Volumetric Content
Figures 8 through 16 show the effects on the stresses due to fiber

volumetric content. Figures 8 and 13 reveal a possible weakness in the
composite. The radial stress along the interface has positive values. If
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this stress were large enough, the fiber-resin interface could fail and the
composite effectiveness would be lowered. Also the shear stress at the
interface (Figures 10 and 15) would additionally stress the interface bond.
It is also noted that increasing the fiber volumetric content in general
increases the maximum stresses at the interface.

The fiber axial stress, shown in Figure 12, indicates another composite
weakness. Since the residual stress in part of the fiber is positive for
vI = 0.80 , the fiber will fail at a lower stress level when a tensile load
is applied to it. From Figure 12, the residual positive stress will become
even higher for higher volumetric content.

gk Changes in Fiber Radius at VI = 0.64

The fiber radius was doubled, from 0.0025 to 0.005; no effects within
the accuracy of the calculations could be seen in the stress fields.

4. Changes in the Fiber Length at VI = 0.64
The fiber length was taken at 10 inches, 3 inches, and 0.5 inch.

There were no effects within the accuracy of the calculations on the stress
field.

Externally Applied Load

From the cases shown in Table I, the effects of changing the following
parameters can be investigated for an externally applied load. In Fig-
ures 17 through 28, the stress is divided by the average external load.

1. Changes in the Combination of Fiber and Resin Moduli

The three combinations of fiber and resin moduli for fixed fiber
volumetric content, VI = 0.64 , are shown in Table II. In general, the
stresses in the plane perpendicular to the fiber axis were not affected
much (see Figures 17 through 20). However, the radial stresses at the
interface would indicate weaknesses in the bond. Since the radial stress
goes from minus to plus for ¢ = 0° to ¢ = 30° , there will be tension in
the bond regardless of whether the axial load is tension or compression.
For a compression load, &y < 0 , the results in Figure 17 would tend to
cancel the residual stresses in Figure 2, but the radial stresses for a ten-
sile load will add to the residual stresses and weaken the bond even further. .

The axial stresses, c§3 and 0§§ , for the three combinations were

independent of ¢ and within £5% of the stresses calculated by the follow-
ing simple equations.
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These equations for the axial stress due to external load are valid
for higher fiber volumetric content, as will be described in the next sec~
tion,

In addition to the radial stress, the shear stress at the interface
(see Figure 18), when superimposing the residual shrinkage and external
load, will also increase the total shear for tensile load and reduce the
shear for compressive load.

The axial stress for fiber and resin is shown in Figures 19 and 20
respectively.

2. Changes in Fiber Volumetric Content

The values for the fiber volumetric content were normally 0.64, 0.70,
and 0.80. However, an unusual change in the fiber hoop stress occurred when
fiber content was changed from 0.70 to 0.80 (see Figures 22 and 27). As a
result, an additional value of fiber content, 0.75, was taken to determine
whether the fiber hoop stress change was abrupt or gradual. From Figure 22,
this stress distribution occurred between a fiber content of 0.70 and 0.80,
and can be expected to be more pronounced beyond 0.80 fiber content.

The radial stresses from external load were similar to the previous
results. The maximum stress is positive and the minimum is negative, and

they both increase in magnitude as the fiber volumetric content increases.

The axial stresses were of the same magnitude as calculated from the
equations in the previous section.

3. Changes in the Fiber Radius at VI = 0.64

There was no effect on the stress fields due to a change in the fiber
radius from 0.0025 inch to 0.005 inch for externally applied load at
constant volurmetric content.
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PART 11 — THREE-DIMENSIONAL LOAD TRANSFER AMONG THE FIBERS IN A MATRIX

The fact that uneven loading occurs in a composite material, especially
near the boundaries and near microfractures, makes it necessary to under-
stand the load transfer among the filaments. Since an arbitrary arrangement
would create insurmountable mathematical difficulties, the mathematical model
chosen was one of periodically repeating characteristics. The unidirec-
ticnal fibers were assumed to be in a hexagonal array, with every third
fiber axially stressed by an external load. The rest of the fibers were
assumed to be stressed by load transmission through the matrix, which was
the main subject of this portion of the investigation.

A. General Arrangements and Assumptions

The composite is considered to be free from residual stresses, and
axially finite but laterally infinite. Figure 29 depicts part of the cross
section of the composite, with the shadowed circles representing the exter-
nally stressed fibers.

Figure 29. Geometric Arrangement of Fibers in a
Unidirectional Multifiber Composite

Displacements and stresses of a typical hexagonal segment in the com-
posite will be determined by assuming that the segment before deformation
changes size yet remains hexagonal after deformation. However, an un-
deformed cross-sectional plane of the segment may not remain plane during
deformation. Therefore, the segment is treated by the classical theory of
elasticity as a three-dimensional body.
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Since displacements and stresses in fibers and matrix are hexagonally
symmetric, a triangular prism of the hexazonal segment with its cross sec-
tion A O C D and coordinate systems as shown in Figure 30 will be studied.

-

Figure 30. Geometry of a Typical Segment
in the Composite

The natural way to attack the problem is to divide the prism into loaded
fiber (domain I),matrix (domain II), and unloaded fiber (domain III), at
their interfaces. The elasticity solution derived from Papkovitch functions
is then applied to each of these domains by determining arbitrary constants
with appropriate physical conditions. The present domains are now defined
as

Domain I (Loaded Fiber):

O<r<a , 0<g¢gs g , =4 =z <4
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Domain II (Matrix):
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Domain III (Unloaded Fiber):

12

2 2 211/2 n
[a sin"® 4+ (b - a cose)] < r hsec(g-cp)

i -1 b - 2a
Os(pg6-tan(2h)

4 < z < 1
The quantities a , b , h , £ , and 8 are defined in Figure 30.

B. Formulation of Physical Conditions

The symmetry of radial, circumferential, and axial displacements
E. (i - 1,2,3) with respect to 2zx- and xy-planes dictates that in
loaded fiber, matrix, and unloaded fiber,

k k k
El(r>(PaZ) = gl(r:-CP,Z) = ,El(ra(Py'Z) '
k k k
Ez(r’(p}z) = gz(ra"ip:z) = §2(r,({>)-z)
k k .k
§3(raCP,Z) = §3(r:'CP,Z) = EB(r)(Ps'Z) (1)
% where the superscript k refers to the corresponding domains I, II, or III.
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The periodic characteristic of displacements in loaded fiber, matrix,
and unloaded fiber leads to

g:(r;({’;z) = §I:(L,CP +%,Z) (2)

where k = I,II, and i = 1,2,3 .

III
52

I1I
(r1,¢1,z sin(¢1 + 9) - g (r1,¢1,z) cos|gp, + e)

(r2,¢2,z cos (% -8 - ¢2) + géll(r2’¢2,z) sin (% -9 - Qz)

111
3

§§Illr1,¢l,z) cos (¢1 + 6) + §§II (r1,¢1,z) sin (@1 + 6)

- §i11(r2’c\°2’z) sin (% -0 - CPZ) - g;[II(rz’cPZ’Z) cos (g_r -0-9
§§II ’1'¢1’z) " §§II r2"92’2) L

The values of r1 , ¢1 , r2 » @ in equation (3) are expressed in terms
of another set of polar coordinates p(0 < p < a) and(@ 0 SGS-E- with its
origin at D (see Figure 31). .

Figure 31. Periodic Characteristic of
the Unloaded Fiber
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These values are given by
2
r, ='“Vgirsin26 4+ (b - p cosB)

- s -1 p_sing
¢ - ooy p cos

i
I

2
2
9 —_\/p2 sin2 {9 +Z:-3T-r-) + [b - p cos (9 +-—371)]

2m )
3|

2
b - p cos (6 +-§1)

.1 P sin (9 +
tan

i

4)

%2

Equation (2) states that the displacement vectors of matrix and exter-
nally stressed fiber possess sixfold symmetry. Equations (3) are the con-
dition that radial, tangential, and axial displacements of the unloaded
fiber with respect to its axis are identical for every multiple of 2m/3
of the polar angle 8§ .

If continuity in displacements 51 and appropriate stresses o1
at the interface exist, then
I I1
gi(a)cp)z) = §i (a,cp,z)
I I1
dli(a)cp!z) = Gli(ascpsz)
II I ‘
gi (r3’(p3,z = gl (r3’(p3’z (5)
where 1 = 1,2,3
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11 III 2
011(r3,¢3,z) - 011 (r3,¢3,z) cos (@3 + 6) +

II 111 1 .2
["22(]”3""3’z " 0pp (F3:93.7)| sin (“’3+e)

[c{%(r3,¢3,z) - Gigl(r3,w3,z)] sin2 ¢3 + e) = 0
°ﬁ(r3""3’z) - C’ﬁl("y‘?s’z) = Ugfrs’q’yz e Uzz(rs’%’z +
2 [C’g(ry%”‘) } "El(ry%’zl)] got (‘93 * 9‘) =0
%- ( 3,¢3,z - ciil r3,@3,z)] cos (@B + 6) -
[&;; T3:P3,%| = Géﬁl(rB,QB,z)] sin (¢3 + 9) = 0 (6)
where
r, = [az sin’p + (b - a cos§) ]1/2 s ¢y = tan” ! (E—%—Eigggg (7)

For a given value of © in the range 0 <@<x % , the values of ry
and 3 calculated by equation (7) are the coordinates of a point at the
interface between domains II and III. Equations (6) are the continuity con-
dition on normal stress in the p direction and circumferential and axial
shearing stresses at the interface between domains II and III.

In order that the fibers remain in the regular hexagonal arrangement

during deformation, the displacement normal to the hexagonal boundary must
be a constant, denoted by

§T(h secy,yp,z) cosy + g;(h secy,p,z) siny = § (8)

k = II,III
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where
b= g0 )

Note that the vanishing of the circumferential displacements €, at the
lines OC and OD (Figure 30) will be automatically satisfied once the
symmetry condition (1) is fulfilled.

Now that the hexagonal boundary is a symmetrical plane, shearing

stresses vanish at the boundary. Thus, in the directions of the boundary
line €D and the 2z axis,

k k
cll(h secy,p,z) - gzz(h secy,p,z)

k
=1 2 Glz(h secy,p,2z) cot 2§y = 0
k k
013(h secy,p,z) + 023(h secy,p,z) tany = 0 (10)
k = 1II, III

If the axial stress applied at the ends of the central fiber as shown
in Figure 30(a) is denoted by Oy > the appropriate condition is

I
033(rp,2L) = o (11)

and if the ends of other fibers and matrix are free from axial stresses,
then

k
033(r:tp,ift) = 0 (12)

k = II,III
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It can be seen from the hexagonal symmetry that shearing forces acting
at the ends of a hexagonal segment automatically vanish as soon as the con-
dition (2) is fulfilled. If the ends are required to be free from shearing
stresses, then

oy (Eapstt) = 0 (13)

k= I,II,IIT i =1,2

The formulation of physical conditions is now complete. 1In total, we
have 54 conditions to be satisfied in this analysis. The solution derived
from Papkovitch-Neuber functions for the deformation of each domain must
satisfy appropriate conditions as described above.

c. General Displacements and Stresses

An elasticity solution derived from Papkovitch functions was given in
a previous report (Reference 1). If nonperiodic terms are taken into
account, the solution to Laplace's equation VZPJ- = 0 can be written as

P, - z Z["’jnk L (ur) + B, Kn(ur)] -[ank sTn(2) -
o kK>o
6jnk cos(u,z)] : ejn sin(ng) + cjn cos(ncp)] +
i " +§ z)[ in(ng) +
o(ajno r BjnoA )(ano jno ejn SEENEY
Cjn cos(ncp)] + ;[ajok Io(p,r) + Bjok 'Ko(”‘r>] '[onk sin(uz) +
6jok cos(p,z)] .(ejo + C’jo z) + (Q’joo + Bjoo log r) (ono +

6joo Z)(ejo + €jo CP) ()
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where P, Lis a scalar Papkovitch function and Pq the component of the
Papkovitch vector in the axial direction, and where o , B , vy » 6 , €,

£ ,n,and yu are arbitrary constants. The solution P; can be expressed
in terms of Bessel functions of first and second kinds of  r , hyperbolic
functions of z , and trigonometric functions of ¢ . However, solution
(14) has the advantage that the argument of modified Bessel functions

1, (ur) and Kj (ur) 1is real in this work.

The solution to the following equations,

I}
o

V2 (Pl cosyp - P2 sin¢)

It
o

V2 (P1 sing + P2 COS@) (15)

can be written in a similar form, and the Papkovitch functions Pj and P,
in radial and circumferential directions can be determined from these two
solutions.

Displacement components are related to Papkovitch functions by

51 Pl i1 R rPl + zP3 + Po

N S
52 7 By i@ wy oo [rpl T Po]

- P -o——Ll _ 2 [ ]
Sk L ey [ 0 TR (16)

Thus, the general displacement function, expressed in terms of cylindrical
polar coordinates, can be found and simplified, as shown in Appendix IIL.*

Stresses of an elastic body are related to strains g;, DY 8eneralized
Hooke's law as follows: 1]
2y €
E ( kk
T + : . .
N 2(1 + v) [1 61]) elJ i 613 e Zv] (17)

% Equations (146) through (148).
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where Gi' is the Kronecker delta and where strains eij are related to
displacements by

€ = ‘a—gl € = g_l.*.l Bgz T
11 dr ' 22 r r Ay
33 ° 3 ¢ 12 T 3 T35 T ? (18)
o of of ag
€ = -—1+..__2. q [ = -—E-{-—%
13 oz ar 23 A2 rye
' y

The stresses corresponding to the above displacement function are com-
puted from equations (16), (17), and (18). The equations for stresses are
given in detail in Appendix IIL.*

D. Determination of the Arbitrary Constants

Arbitrary tonstants, which enter through equation (l4) into solu-
tions (16) and (17), are to be determined by appropriate conditicns of
each domain. Solutions (16) and (17) have been expressed by the solu-
tions in Appendix II.** To satisfy the periodic condition (2) of
matrix and loaded fiber, we specify, after substituting solutions (14)
and (15) into (16),

n = 6, 12, 18, 24, ... (19)

Displacements (16) specified by (19) have been applied by Haener and
Ashbaugh (Reference 2) to a unidirectional multifiber composite under re-
sidual shrinkage and axial load. The choice of (19) results in eight of
the integration constants in the displacements becoming zero for the domains
I and II respectively.®** 1In order that the displacements and stresses
remain bounded at the center of the fiber, the coefficients Bjpk in equa-
tion (14) must be zero for the solutions pertaining to the fiber. Satisfying

* Equations (149) through (154).
*% Equations (146) through (154).
*¥% Equation (156).
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the loading condition (1), we choose in the expression for 033 (see
Appendix II*) the p so that cospd = 0 ; therefore,

I _ ko
T2t ()

In the stress expression 013 for the fiber, all tle terms involving cosz ]
will automatically be zero gy reason of the above choice (20). However, ]
the terms involving sin z will not be zero and will contribute a loading u
at the end which is a function of r . Since this is compatible with the ’
boundary condition (11), the coefficients of sinz 4in the stresses must
be zero.** Therefore, additional relationship between these coefficients ]
can be obtained.¥¥¥*

Additionally, the unloaded condition (12) of domain II leads to 1

k
R (21)

k =1,3,5...

and to the discarding of six further integration constants and a relation
between four additional integration constants.?t

The periodic condition that displacements of the unloaded fiber are
identical for every multiple of 2m/3 with respect to 6 has been de-
scribed by equation (3). The displacements in domain ILI do not have any
periodic propertyttin the polar angle ¢ , the fourteen terms contained in
the P functions in (16) and (17) being characterized by the factor
sin ngp or cos ngp for domain III.

%* Equation (154).

. %% Equation (154).
*¥% Equation (155).

t Equation (157).

tt As far as a hexagonal element as shown in Figure 30(a) is concerned,
displacements of the six unloaded fibers possess sixfold symmetry. How-
ever, an elasticity solution is not valid for a discontinuous medium.
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The resulting solution is the special case corresponding to the vanish-
ing of n 1in the expressions P and 1] in the solutions (16) and (17).
The vanishing of the axial stress at z = #{ 1in equation (1l2) requires at
the end of domain III |

III kr (22) 3

On the basis of equations (22) and (12), conclusions similar to that
made for the loaded part can be made in this case.*

It can be seen that displacements and stresses are composed of products
of functions of r and orthogonal functions of ¢ and 2z . The functions
of ¢ will no longer be orthogonal, however, as displacements (16) are
introduced into conditions (3) and (8) and stresses (17) into conditions
(6) and (10). This arises from the following parameters:

1. The polar radius r 1is related to the polar angle ¢ at the
hexagonal boundary.

2. The polar coordinates r and ¢ at the interface between
domains II and III are related to each other by condition (7).

3. Coordinates r and ¢ in domain III are related by con-
ditions (4).

Because of the existence of certain relations between r and ¢ , it
is impossible to determine the arbitrary constants in solutions (16)
and (17) by conditions (3), (6), (8), and (10) as they stand. Therefore,
the following approximation is developed such that these conditions will be
satisfied with any desired or sufficient accuracy.

In the design of a fiber reinforced composite structure, a high ratio
of fiber to matrix is desired, and, hence, the angle subtended by the hrex-
agonal boundary of the matrix toward the z-axis is small in a cross-sectional
plane. For example, this angle is about 5° for the volume of fibers in a
composite being 65%. Therefore, the hexagonal boundary of the matrix (not
fibers) can be replaced by a circular cylindrical surface with its axis
coinciding with the z-axis and with its radius being

p e A Va2 o - L) (23)

* Refer to equation (160).
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With such a substitution, conditions (10a) and (10b) become

|
o

II ”
U12(rm’cp’ )

(24)

)
o

II Z)
013(rm,¢,

The approximation to conditions (3), (6), (8), and (10) will now be
developed.

Based on the periodic condition (3) of the unloaded fiber, average dis-
placement components of a volume element in the direction. at @6 = 0 and
6 = n/2 and in the axial direction are respectively equal to those of a
corresponding element in the directions at 6 = 2/3 and 6 = 7¢/6 and
in the axial direction.

III . III{
‘[T- [gz (rl,Ql,z) sing, - gl (rl,ml,z) COSWI] pdd dp dz
v,
i

=‘[]~ [ggll(rz,mz,z) sin(%-- @2) + g{II(rva?fz) cos(% - ¢2ﬂ pde dp dz
V!

i

‘ll]’ [gill(rl,wl,z) sing, + ggll(rl,wl,z) cosw;] pd6 dp dz

v
i

=m;![§$11(r2"92,21 sin(g— - cpz) = gill(rz,(pz,z) cos(-g- - CPZ)]pdG dp dz
i

P
LIIT III
J §3 (rl,¢1,2) pd8 dp dz =‘[[T- 3 (rz,wz,z) pdo dp dz (25)
v,
1

i= 1,2,3,...m1
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where my is the number of volume elements of domain III, . nd V; and V{
are two corresponding equal elements as shown in Figure 31 ishadowed arecas
with the same axial length).

According to conditions (6a) through (6¢c), the average displacement of
the matrix at an element of the interfacial surface between domains II and

III is equal to the corresponding average displacement of the unloaded
fiber.

II .
J]' 1 3,¢3,2) COS(p3 = §2 (r3,m3,z) 31n¢3] ado dz

III(
3

I NI,
[ ( L4:Qq:2) COSQy - € ,¢3,z) 31n¢3] add dz
A

i

I1 II
’ [gl r3,¢3,z) “1n¢3 + §2 ( 3,¢3,z) cost] ade dz
i .

II1 III
N [ ( 3,¢3,Z) smcp3 + §2 ( L35¢452 ) cost] adf dz
pL

: 111
] ff §3 3’°P3’ ade 2 “j]; €3 (r3"P3’z) e G (26)
! i

i=1,2,3,...m

which are the corresponding averages of the displacement components along
the directions of x-, y-, and z-axes vrespectively, and in which A, 1is
an elemental area of the interfacial surface with m, being the number of
elements.

From conditions (6d) through (6f), two averages of the corresponding
components of the resultant force produced by normal and shearing stresses
at an element of the interfacial surface between domains II and III are
equal to each other.
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cos

cp3 4+ 6 oSy + d;; (rB,cpz,z) sin(ch + e) sincp3 A

/[]Ai{ {“ﬂ(fy%,z

II .
012(r3,cp3,z) 51n(2 ¢y + e):la cose} dg dz

rj,QPB,Z) sin(cp3 + 6) sing, -

III ) . ITI
{[0]1 r3,cp3&) cos(cp3 + e)co‘,\p3 + Ty9
A

i

III ,
919 (r3,cp3,z) sin 2((p3 + 6)] a cose} dg dz

II , I1 R
ﬂ {[011 r3,cp3,z) cos(cp3 + 9)slncp3 + 022(r3,gp3,z sm(cp3 + e) coscp3 +
A,
1
L z| ¢ 2 + 0 sinB )dg d
012(r3,cp3, ) os( (p3 ) a n z

III \ IIT
=JJ' {[011 r3,cp3,2) cos(qa3 + e)sm% +022 (r3,cp3,9
A
i

031(1.3@3,2) cos(2 ®q + 6)] a sine} dg dz

ﬂ, (O-g(ry(pyz) cos(CP3 + 9) - og(r:},cpyz) sin(ch it e) add dz
Al
il

sin

cp3+ e)coscp3 +

| 111 III .
=ﬂ lgw r3,cp3,z) cos(cp3 + e) - 0y3 r3,qo3fz) sm(cp3 & e)] adg dz  (27)
A
i

i= l,2,3,...m2

which are force components along x-, y-, and z-axes respectively.
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According to condition (8), the average of the displacements normal to
the hexagonal boundary must be equal to &§ for any element of the boundary
plane

B—lj_-ﬂ' [gllc.(h sec¢,¢P,Z) COSW + g;(h Sec‘l’,cp,Z) Sin¢]h SEC2¢ dqf dz = & (28)
B
i

where Bji 1is an elemental area of the boundary plane of the matrix or the
unloaded fiber. The number m3 of the elements of the matrix boundary is
not necessarily equal to that of the fiber boundary.

Based on condition (10), the shearing forces acting at an elemental
area of the hexagonsl boundary must vanish.

Jr {[0'1[{1(}1 secy,p,z) - G:z[;l(h sec’#,cp,z)]sinw cosy -
B
i

» ‘ % |
O':]l:.;I(h sec‘l’ :CP’Z)(sinz‘F i cosz¢)} LR llf dw dz = 0 (29)

[cigl(h secy,p,z) cosy + cgil(h secy,p,z) sinwlh sec2¢ dy dz = 0 (30)

B,

1 i=1,2,3,...m,

which are shearing forces along the boundary line C D (Figure 30) and the
z-axis respectively.

Applying a similar approximation to condition (13), the vanishing of
the shearing force which acts on a small element, Rj, of the end section
area requires, in the directions of x~ and y-axes,

-j]; {ng(r,w,L) cosyp - cgz(r,w,é) sing| rdp dr = 0
i N -
3 )‘+k-L) -dd-O (31)
" O3l(r,¢,L sing 032(1,¢, cos@| rdp dr =
oL
k = I,II,IIX i= 1,2,3,...m4
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It is seen that equations (25) through (31) can be reduced to condi-
tions (3), (6), (8), (10), and (13) when the regions in which integrations
in these equations are carried over become infinitesimally small. There-
fore, these conditions are replaced by the corresponding equations.

If two functions are defined as

z (0<z <)
f(z) ={
2 -z L <z< 24)
2% 0 <z<4)
20+ 4y oz - 24, L <z<2)

then the variables z and 22 contained in the P functions in displace-

ments (16) and in the 0 j of stresses (17) can be represented by
o]

z = 82 (-l)k‘-l/2 1 sinuz
2 k2
T k=13

2 3242 k+1/2 1

2" =) m—m— (-1) =3 cosuz (33)
b k

The introduction of solutions (16) into (25), (26), (27), and (28),
and (17) into (5d,e,f), (27), (24), and (31) leads to a system of linear
algebraic equations in terms of arbitrary constants and the unknown § .
The infinite series in these equations are to be truncated in numerical
computation., If the number of n values is denoted by n , the number of
k values in the solutions for domains I and II by %12, and the number
of k values in the solution for domain III by k3 , then the total number
of unknowns is

9 x klzxn +6x’E12+8xE3+8 X o+ 12

The total number of equations to be satisfied is

8x k,, xn +5xk

12 2+7>(n+3m

+6m2+4m + 6m, + 6

1 1 3 4
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Thus, infinite series existing in this work without any recurring relation-
ship between their coefficients are to be truncated or the numbers mj, mp,
mg, and m, are to be chosen in such a way that the number of unknowns is
equal to the number of equations. However, the order of the square matrix
is extremely large. To reduce the order, the matrix is subdivided into a
number of rectangular arrays, and each array in turn is a matrix. After
some laborious computation, the maximum order of submatrices yields

k12 xn + E12 +n+ 2

or

4 x EB + 4

In this study, symmetry condition (1) of a hexagonal segment, periodic
condition (2) of matrix and loaded fiber, continuity condition (5) at the
interface between matrix and loaded fiber, and end conditions (11) and (12)
have been exactly satisfied, while the other physical conditions are approx-
imately fulfilled. It is expected that the vanishing of shearing stresses
(10a) and (10b) at the hexagonal boundary of the matrix will be satisfied
with sufficient accuracy and that the vanishing of shearing stresses (13a)
through (13d) at the ends of matrix and loaded fiber and the constant dis-
placement requirement (8a) at the hexagonal boundary of the matrix will be
approximately fulfilled for a few values of Kjp and n . The price paid
for increasing accuracy in the fulfillment of other conditions is that the
order of the matrix must increase.

The variation in stresses of a long composite with every other fiber
loaded is expected to be small in the middle portion of a hexagonal segment,
and, hence, the corresponding elements chosen for computing efficiency
should be larger than those close to the ends. The transfer of loads in
the present case possibly is an end effect; that is, the transmission of
the largest portion of loads from the externally stressed fiber in a hex-
agonal segment to six unloaded fibers through the matrix occurs in the
neighborhood of the ends.
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PART III — BUCKLING OF A FIBER IN A FINITE ELASTIC MATRIX

UNDER AXIAL COMPRESSION

This study was concerned with the determination of the critical load
of a fiber embedded in a soft elastic matrix subjected to axial compression.

The finite length composite cylinder is assumed to be free from initial
stresses. When the load increases incrementally from zero, the fiber remains
straight and the composite is under compression without bending. When the
load continues to increase and reaches a certain value, the fiber deflects
laterally. At this value, the compressive force is called the Euler criti-
cal load. Later on, the deflection increases rapidly with a small increase

‘of the applied compression. Eventually the fiber buckles in a wavy shupe

and loses its natural function, the transmission of compressive forces.
Therefore, the critical compressive load is very important in the design
of such composite structures.

An analytical method has been developed by Sadowsky and Hussain (Fefer-
ence 3) to determine the thermal critical load of an infinite fiber bonded
to an infinite domain of matrix without mechanical loading. The matrix has
been treated by the linear theory of elasticity as a three-dimensional body,
and the fiber by one-dimensional elasticity. The method of approach is
reasonable. In the present work, it additionally accounted for the moment
produced by axial shear at the interface between fibers and matrix such that
this shear influences the critical load. It should be pointed out that the
total axial shearing force at the interface vanishes, but not the produced
moments.

The method of approach to the present. problem is similar to that devel-
oped by the above authors. Instead of using Boussinesque-Papkovitch poten-
tial functions, the equilibrium equations in cylindrical coordinates for the
deformation of matrix are directly solved in this work. Equations of equi-
librium for the critical load of the fiber are in a simple manner derived
by the one-dimensional nonlinear theory of elastic stability, based on
statics consideration different from that in the report by Sadowsky and
Hussain. The contribution of axial shear at the interface to the equation
of moment equilibrium is taken into account. The critical compressive load
of the composite cylinder corresponding to the buckling of the fiber found
in this study is a function of elastic constants, fiber radius, and outer
radius of the composite.

General Description

Consider a composite cylinder of finite length L , fiber radius a ,
and outer radius b of the composite with two coordinate systems as shown
in Figure 32.

+
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Figure 32. Geometry of a Composite Cylinder

Experiment shows that the buckling mode of a fiber in a low-modulus
matrix subjected to axially compressive load is approximately a plane sine
curve. If stresses of the matrix at the buckling of the fiber are within
its elastic range, it will be appropriate to treat the matrix by the linear
theory of elasticity as a three-dimensional body and the fiber by the non-
linear theory of elastic stability as a slender bar subjected to compression
and appropriate lateral loading. If the buckling wave is chosen in the yz-
plane (Figure 33) and if the deflection of the fiber in the y-direction is
denoted by v , then the buckling wave of the fiber can be written as

v = v, singz (34)
where 7 is the amplitude of the sine curve and where

@ = = (35)

with n being the number of half wavelength along the z-axis.
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Figure 33. Fiber at the Buckling

Displacements and stresses given by (16) and (17) for load transfer
through fibers in a matrix (Part II of this chapter: Three-Dimensional
Load Transfer Among the Fibers in a Matrix) are suitable to the deformation
of the matrix under consideration by appropriate choice of the Cartesian
coordinate system., However, arbitrary constants in these expressions are
difficult to determine in the present case. To simplify the problem, the
approach descrited in Part I of this chapter (Parametric Studies) is
applied.

Based on the three-dimensional theory of elasticity for a close-
packed fiber composite under compression, stresses in the plane per-
pendicular to fiber axis were vanishingly small compared to the average
axial stress for the epoxy-fiberglass composite. =

It may be assumed in the present analysis,without introducing appre-
ciable error in the results,that the stresses developed during buckling at

the interface between the fiber and matrix are produced by bending only.

The displacements and stresses of the matrix are given in Appendix III
to this report.

Equations of Equilibrium of the Fiber and Its Critical Compressive Load

Consider an element, AB , of the fiber with length dz before bending.
It is suppositioned that this element has already been under compression.
After bending, AB will displace to A'B' .

When some lateral deflection is produced in the compressed bar, there
is some change in compression, but a more detailed iavestigation by S. Timo-
shenko (Reference 4) shows that this change is negligible. Since the
compressive load is not changed, the fiber axis will be under the same axial
force as that before bending,and there will be no change in the leagth along
the neutral plane. During bending, axial forces N , transverse shearing
forces Q , bending moments M at the ends of this element, lateral
forces S per unit length, and axial shearing forces T per unit length
are shown in Figure 34.
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Figure 34. Geometry of the Fiber

The equation of equilibrium on the moment in the x-direction requires

dM =
) G TetY =0 (36)

where the last term M; is the contribution of moment per unit length pro-
duced by axial shear at the interface between fiber and matrix.

If the radius of curvature of the element dz is denoted by R , then
the result of two transverse shearing forces is in the negative direction
of the z-axis, with the magnitude being Qdz/R, and the result of two axial
forces is Ndz/R in the negative direction of the y-axis. Therefore, the
equilibrium equations on the force components along y- and z-axes are given

by
.dg. - b _N = 0
dz $4 R (37)
daN & =
iz + T - R 0 (38)

g

where the nonlinearity has been introduced by considering the influence of
the deflection v and where the angle of rotation of the element has been
assumed to be small.
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The moment Ms produced by axial shear 013(a,¢,z) in the x-direc-
tion,*

7
2 ,
MS = 2 a 013(p2,¢,z) sing do
0
= 1 az A% O_O coswz (39)
o ~13

and the component of the moment produced by 013 at the interface in the
y direction automatically vanishes.

The lateral force S at the interface yields, by using (196),

2
s = [cll(p2,¢,z) sing + clz(pz,@,z) cosm] adyp

(o}

T a Vo (oil + ciz) sinyz 40)

and the force component produced by stresses o11 and gjp at the inter-
face in the x-direction automztically vanishes.

The axial shearing force T at the interface is from (196)
2

T = 013(p2,¢,z) adp = 0 (41)
o

Using (34), (39), (40), and (41) and the relations

2
: 1 d
; il i ‘. (42)
! dz
f I 2
' _ BT 1 .4 Idv
{ dz
g * See equation (196).
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Equilibrium equations (36), (37), and (38) are reduced to

2 )
7 a Dadh 7 4 1@
S CT [a e ”0,613]s
i &Q L >
= and o
RN = - on * o)) €a)
o
!
dN
e 0 J
where B 1is the angle of rotation given by
dv
5%-(-1;.- v, o cosqz (45)
Elimination of Q from (44b and c) gives
d°N T o o
-— 4+ N = o + 0
2
dBZ 11 12
which has the solution
E Ta 0 0
N = Cl_cosB + C2 sing + _7'(011 + 012) (46)
o
where C; and Cp are arbitrary constants. Introduction of (46) into
(44c) yields
{ Q = C; sing - C, cosp (47)

k sinf

In agreement with the assumption of small angle of rotation, functions

and cosB are replaced by B and 1 respectively. Thus, (46) and
i (47) are reduced to
E
] a (¢} o
N o Gy £C,8 w2 s +c)
r . 1 2 CY2 11 12
| Q = C;B-Cy (48)
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Comparing (48b) with (44a) leads to

2
o as i 2SN Ee
C [d E” o +ao'l3 (49)
By substitution, the solution (48a) results in

)

o}

2R8I D7 S 13 1 o 0
a o

which is the internal axial force of the microfiber at any cross section.

If the applied compression of the microfiber is denoted by PI , then
we must have at its ends

N = ~-P (51)
or
o.O
. gl il Sl Tusr B e

in which ¢y (i=1,2,3) are functions of a, b, & and elastic constants
of the matrix. Thus, (52) contains only the parameter @ to be determined
by the minimization of pl

d PI

o " ° o2

from which @ or the ratio of number of half wavelength to fiber length
can be computed. The compressive force pl corresponding to this value of
o is the critical load of the fiber denoted by Pgr . The corresponding
compressive force applied to the ends of the matrix is determined from the
condition that the axial displacement of the matrix is the same as that of
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the microfiber at the ends of the composite. If this load is denoted by
PIL, we have from the above condition,

II 2

I

S ] (56
E a cr

The total compressive load, P* , applied at the ends of the composite is
then given by

P*¥ = P+ P (55)

which corresponds to the buckling of the fiber.

The constant axial displacement at the ends of the composite is not
necessary to require the vanishing of the right-hand side of (193c). The
axial displacement produced by bending is of influence with axial stresses,
but not the axial force acting on a cross section because of geometrical
symmetry of the fiber with respect to the neutral plane. Actually, the
axial displacement produced by bending at the beginning of the fiber buck-
ling can be neglected, since the length of the fiber axis does not change
by bending and the angle of rotation is small. If this is done, the cor-
responding change in other equations is to set the right-hand side of (195)
to zero.

It is seen from (52) that 014 (i=1,2,3) 1is the contribution, to the
critical load, of interfacial pressure and circumferential and axial shearing
stresses at the interface between fiber and matrix. The critical load PI
and, hence, PII and P* are simply functions of elastic constants of fiber
and matrix, fiber radius, and outer radius of the matrix. Thermal buckling
load of an infinite-length fiber bonded to an infinite domain of the matrix
without mechanical loading and critical load of a finite-length fiber in
lateral infinite matrix under axial compression can be treated as special
cases of the present result by performing the integrals in (177), (181),
and (185) analytically.
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PART IV — ENERGY SOLUTIONS OF THE INSTABILITY PROBLEM

The problem of the buckling of microfiber embedded in a supporting
matrix, under axial compression and under internal shrinkage load, was
analytically investigated with energy methods in five different cases.

The models include a single-fiber and multifiber reinforced composite of
finite dimension, and a single fipber in an infinite matrix. The multifibers
under internal shrinkage loads are treated with a simplified assumption,
allowing the use of the Lagrange multin~'iar method of vari.: . ._ua.

The Ritz-Galerkin method minimizing total potential energy was used in
deriving the equation for obtaining the critical load of the fiber. 1In the
‘present analysis, total potential energy contains the strain energy due to
the bending and extension of the fiber, plus the energy of the interfacial
pressure and longitudinal shear applied by the matrix to the fiber less the
work done by external force. The stress field of the binder was determined
by solving a plane elasticity problem. However, it was solved two-
dimensionally as well as three-dimensionally for the case of the multifiber
reinforced composite of finite size. The fiber and matrix elasticity are
well matched at the interface by imposing boundary conditions requiring the
continuity of stresses or displacements. Finally, the smallest buckling
criterion was found by variation with respect to the wave parameter.

To formulate the problem, the following assumptions were made:
1. Both materials are linearly elastic, isotropic, and homogeneous.

2. Elongation, shear, and rotation of constituents are small in
comparison with unity.

3. The deflection curve of the fiber and then the distribution of
the interfacial force at the buckling state are sinusoidal in
the axial direction.

4., Binder modulus is much smaller than fiber modulus.

5. The cross-sectional area of the fiber remains plane and
circular after loading.

6. During buckling, there is no relative slip between fiber énd
matrix.
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A, Buckling of Multifibers in a Finite Matrix

1. Buckling Load of the Fiber (Ritz Method)

2 |

Figure 35. Half Critical Wavelength
Shown on One Fiber

Geometric boundary conditions are, at
I
z=0 , §1 = 0 (56)

and at

z=L , & = 0 (57)

Taking into consideration the geometrical boundary conditions of the fiber,
we can assume its deflection curve,

[os]

gf = zi:g;n sin E%E (58)

n=]

In the present problem, the total potential energy includes strain
energy due to the bending and extension ol the fiber, plus the strain energy
due to interfacial pressure and axial shear applied by matrix on the fiber,
less the work done by external force.
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The strain energy due to bending of the fiber is shown below (see

Figure 36).
a/\’

Hlafégqgérfw |

L 2

2 I
sl ol
E I 3
dz

[
fl
N =

dz (59)
o

Figure 36. Bending of a Fiber Element

The strain energy due to the extension of the fiber is derived as follows
(see Figure 37).

r’
o '
g]_ I = dz
AE
=1
Az
0
z

Figure 37. Schematic Diagram of a Fiber
Element During Loading
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The deformed length of an element of the fiber is

ds ='Wv/dz +d g§)2 + [a gi)z

Y L R )
= dz 1+T+'§—E-E— +—2'—-a-;— R,

Then the increase of strain energy due to the shortening of the fiber is

L
pleas - dz)

(=]
]
'

L d §I d gI 2
S E R G
dz 2 dz

-| P

(60)

The strain energy due to the interfacial pressure contributed by the matrix
is

L
1 I
U 2 P1n §) 92
(o]
L
1 I\2
= 3 k(gl) dz (61)
o]

The strain energy due to axial shear contributed by matrix is depicted in
Figure 38.
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Figure 38. Geometry of Two Neighboring Fibers f
in a Multifiber Composite '

In the matrix, shear strain is expressed by

II II
3, ¥

II
€3 = 3r + =3 (62)
Since shear strain should be continuous at the interface, then
11 I
2] (@) 3E (@)
dz = oz
II II II II
dr d ~ o d
I
n_ % :
ST dz
I
3g
11 a 1
€1 (1 +3) =t (63)
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e e ™ * — S Y e s |
{
: 1
og
11 II II I ay %1
o3 = G €5 = ©C (1+ dj——az (64)

Thus, the strain energy due to longitudinal shear of the matrix on the fiber

is
L I,.2
2 2] I1 2 dE
Sk (b - alG a ( 01 3
US 5 1+ 3 Y dz (65)
o
The external work by prescrfbed loading during buckling is
. L |
I L, I
W PL §3(0) - PR §3(L) - §3 Py dz
0
L T |
I I I 4P
= PL §3(0) - PR §3(L) + g3 e dz
0
L L : L I
I dE
I.I IdpP” - I 3
IR 4l B S (66)
o o o
r’
—{ dz — —
L . e - R el
0 Pl py | pl+ gpl ' 23
L P
t Figure 39. Schematic Diagram Showing One

Fiber Under External Load
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since

pt _ (@l + apl) - py dz = 0

I
dP
Py T (67)
Therefore, the total potential energy Te is
T = U +U +U +U -W
e b e p 5
L dzgl 2 L ng ng 2
= 2| g2l 4 pl =22 4 1| 2L |4z +
2 dz - dz 2 |dz
o )
L L agI 2
1 i1 M (2 2)11( a\2 1
> k(gl) 4z + 5 [b°-a’|6™{1 + 3 —1| dz +
o o)
- Id€§ :
Pa—dz (68)
o}
Thus
el 1l " dzgiz vz [ dgiz
Hr = oz d2-3F o et
(o] o) .

1,2
L1
1) dz

= (69)

L 2 L
1 Iy2 1 II 2 2 a
2k (El) dz + > G n(b -a)(1+-a-) J'
o o
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Substituting equation (58) into equation (69) and making use of integral
identities, we get

O LS DI CARGI
bt )b et Ll g ) JeL P 0o

Minimization of total potential energy with respect to the amplitude of the
assumed curve gives the stationary condition; i.e.,

oT
= 0
I
j=1,2,3,...
From equation (70)
oT i 4
i ! I (13) L L
= P BT LEl (T rFke
§1j
3 2 I 2
e fa2 2) II( 3) I .2 i i | (iﬂ -
2L(b‘a G +al Biyd -3 8y % 0 (71)

I

This equation either yields €1j = 0 , which gives the undesirable case of
zero deflection, or the following results are obtained:

2
R RS TR N TS

2 2 L2
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which gives the critical load for the fiber; i.e.,

2 2 2 2
I _ aq I .1 L ( 2 2 11 ( 3)
P = Sk T +—n22k+nb-a)G 15 2 (72)
i

where k has the dimension of pound per square inch, and is equal to the
ratio of interfacial force per unit length to unit lateral deflection.

Foundation constant k for the multifiber reinforced matrix is derived

‘as shown in Figure 38.

We can imagine the matrix as a two-dimensional plate and under merely the
normal interfacial force per unit length p;(z) . The expression p1(2)
must have similar distribution as

0 o
pl(x) = Z Pin sin B.T_IT‘.?:. = Z k EI"[{ sin m;—z- (73)
n=1 n=1

Therefore, the boundary conditions are, at r = 0

II n=1
o017 = ) (74)
II
o3 = 0 (75)
and at r = 2d ,
I1 nmnz
k gln sin T
II n=
°11 ° ma (76)
II
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The stress field in the matrix can be represented by the following
stress function

s nnz
b)) om Z (bn(r) sin T (78)
n=1

By substituting this equation into the differential equation (from Ref-
erence 5)

4 4
28, ,_ 08 3¢ _ (79)

ar4 arZaZZ 824

ve get

(3})4 8 (r) -2 (ELI'-)2 B(r) + 41 (x) = 0 (80)

The solution to the partial differential equation (79) is

[*+] o

2
$(r,z) E (nn [An cosh 7 R b cosh ( ‘i
n-

\ nmr nnr ' nnr s
Cn sinh (—L + Dn (——L sinh (—L )]

sin (E{—z') (81)
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The stress components are

1 826
% = ot
33 ar2
:
= [(An 22 Dn) cosh (P—zﬁ + B (“"r cosh(g{—r-) +
n=1,2,
(2 B +C ) sinh (nnr) + D (nnr) sin h( nnr)] + 8in (E%E) (82)
2
I 3%
Ol 2
. oz
= " 1A cosh (nnr + B (EEE osh (nnr
n n L
n=l,2,...
, amr nmr , nnxl| . nmz
Cn sinh ( 1 + D ( sinh ( T )] sin ( (83)
I 3%
&5 5 drdz
= E [(An+Dn) sinh [7E) + 3 =) inh (222} +
n=1,2,...
(B + C ) cosh (nﬁl) + D (EEE) cosh( E%L}] * cos (5%5) (84)
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Appiying boundary conditions (74) to (77), we have

g€
°ln
4 o = ma (85)
B +C = 0 (86)
A codh 2 nnd) + B (2 nrid (2 nnd) +
n L
K §II
. 2rmd) (2 nnd) ; (2 nrrd) _ ln
Cn sinh (—-—L + Dn S sinh = | - - (87)
A sinh [—-——-2 m’rd) + B [(E—En—d) sinh (2 nﬂ’ + cosh (-————2 rmd) + ]
n L n L L
C _ cosh (————2 nnd) + D [ nh (2 I +
n L n
2 m-rd) (2 m‘rd) _
(-———L cosh ~ = 0 (88)
Substitution of (85) and (86) into (87) yields
I1
k g
1n (2 nnd) (2 nnd) (2 nrrd) _
- pees cosh -—_L + Bn T cosh ———L
K §II
, 2 nnd) (2 nnr_l_) ) (2 nnd) - 1n
sinh (—-—-—L ] + Dn[-—-L sinh - — (89)
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Substituting (85) and (86) into (88), we get

II
ks g1n

; 2 nmd (2 nnd) .
sth( I ) + Bn I sinh

2 nnd)
] +
L L

. 2 nnd) (2 npdl (2 nrd
Dn [51nh ( T + T ) cosh - 0 (90)

The denominator of Bn and Dn

» solved from equations (89) and (90), is

2
2 nnd) 2 (2 and
‘ I - sinh I

(9L)

The numerator of coefficient B, » solved from equations (89) and (90), is

II
k §1n (2 nnd) _ 2 nnd
ma L L

2 nnd) 7 ( 2 nnd)
h (.____. - S +
Ccos sinh

, 2 nnd) (2 nnd)
sinh ( T cosh -3 (92)

The numerator for coefficient Dy , found from (89) and (90), is

K §II
In ., (2 nnd) 2 nnd , (2 nnd)
= sinh I [ I - sinh =~ (93)

Then the results of coefficients are as follows:

II
k
A - . —fin (94)
n ma
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. g1l
1 (2 nnd) _ (2 nnd) cosh (2 nnd) == (2 nnd) ”
ma L L L S 5

B -
n
2 nnd) 2 nﬂd) L /2 nnd)z 2 (z nnd)
sinh(——-L cosh - ] -\ - sinh — (95)
Cn = - Bn (96)
II
k €
. In _. (2 nnd)' 2 nnd) : (2 nnd) o
Dn e sinh I [ I - sinh T =

2
2 nnd) e 2 (2 nnd)
(—L - sinh’ ST (97)

By law of two-dimensional elasticity for the plane stress problem, we have

I1 II  II II
0§, 95, V 933 o)
or EII EII

II II  II II
o€y o33 VY 911 o
Y oI i

Substituting expressions (94) through (97) into equations (83) and (84)
and the results into (88), we obtain

2d

1 I1 IT 1II
€, = TIT 017 =V 033 dr (100)

(o}
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By integrating equation (100), we get, after extensive analysis,

2 LI
II KL E o
gl i ,II 2 ’—n—{['8 dn+8 dn COSh (2 dn)-
E " a
n=1
25inh3(2d)-4sinh(2d )cosh(Zd )+
n n n
2 TSEinh (2 d ) +2 sinh(Z d ) cosh? (2 d )]-
n n n S
[2 d )2 - sinh? [2 d ] sin o 2 (101)
( n ( n) ¥y
Thus
p
Kk = = = gl 8 (2d2»sinh2(2d)]4
II n n n .
gl n=1

[-Sd el d Wcost (Zd )-2 sinh3(2d )+
n n n n

2 sinh (Zd ) -4 sinh(Z d ) cosh (2d )+
n n n

oA hnh (2 d_ )cosh2 (2 dn)D (102)
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2. Smallest Buckling Load and Buckling Wavelength of the Fiber

From equation (72), we have

2 2 2 2
I _ nop" I.I, L 221( 3)
P = SE I +——22k+n(b L )G 1+2 (103)
L nm
Let %F = @, . Combination of equations (102) and (103) yields the

expression for critical load

o

pl = 2 elil+2gld na{Za d)z - sinh? (2 o d) S

cr n a2 n n a
n

[-25inh3 (ZQ/d)-Sqd +8adcosh(2o,d)-
n n n n

4 sinh (2 o d) cosh (2 o d) + 2 sinh (2 o d) +
n n n

2
2 sinh (2 and) cosh2 (2 and)i} + n(bz-az)GII (1 + %) (104)
Since the buckling load (104) depends on the wavelength

(104) must be minimized with respect to o, to obtain the critical wave-
length corresponding to the smallest critical buckling load of the fiber

ey
o0 = 0 (106)
n
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The result of (106) is
2 a3 EI II [— 2 sinh3 (2 o d) - 8o d+ 8 ¢ d cosh (2 o d) -
n n n n n
4sinh(2qd)cosh(2afd)+2sinh(ZQ/d)+
n n n
. I
2 sinh (er d) cosh2 (Za d)]2 + E I na{[(za d)?' -
n n n
LA e (201 d) coEh (2a d)+ sinh? (2 @ d)].
n n n n
[-2sinh3(2ad)-sad+8adcosh (zad)-
n n n n
o (zo, d) cosh (2ad)+ 2 sinh (20, d) +
n n n
. 2 2 A N.
2 sinh (?_and) cosh (2 and)]-an[(z and) - sinh (zand“
[-4d 2 (2 and) cosh (2 Q/nd) - 8d + 12 d cosh (2 o,nd) +

16d° ¢  sinh (20/ d) - 8d sinh? (za d) - 8d coshz(Za d) +
n n n n

4d cosh’ E and)]} = 0 (107)
From equation (107), we can determine @, as a function of ETT o
E
a and b . In other words, we obtain the critical wavelength Lcr = gﬁ
j

as a function of the material constants, the diameter of the fibers, and
the volume percentage of the fibers. Substituting this value of i into
I

equation (104), we then get the minimized critical buckling load, PCr Hif °
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3. Alternative Way of Finding the Strain Energy Due to Longitudinal
Shear

1 II II 1 112
5| o3 €13 &V = =% [(013 dv (108)
v ¥

The expression glg from equation (84) has been introduced into (108).
After performing the indicated operations, the results of strain energy due
to longitudinal shear have been used to replace the last term of equation

(103)., In this manner, then, the smallest buckling load and corresponding
wavelength were obtained.

2 -
k"d o
1 2 I 1 -2 n
Pcr o E- I + o, k + 11 Y (109)
. 2ma G

3

Y 1is an analytical expression given in Appendix IV.A (198a). The equation
for o, 1is given in Appendix IV.A (200), while k (a kiad of a foundation
constant) is given in equation (102).

B. Buckling of a Single Fiber in a Finite Matrix

1. Constant k for Single Fiber in a Finite Matrix

o L

J e e e Vo e =z
b 0
# d = b-a
r
Figure 40. Single Fiber Dimensions
Assume load per unit length at the interface,
[=-]
- s
Pl(x) EE: Py, Sin -7 (110)
n=1,2,...
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The boundary conditions are:

[==]
. nmne
Py, Sin ~
. I aeL2,... i
ak EEEp o1 = ma » 913 g
> (111)
II II
at r = ¢ = b-a , 1] < o , o3 = 0
-

By applying the solutions for stresses, equations (83) and (84) the
integration constants are established [Appendix IV.B, equations (201)
through (204)}. These constants are used in the displacements and stresses
to express the strain energy during loading

1 II V 1 112
2 | 913 €13 &V = —"i'i'f("w oy (112)
v v

written out in Appendix IV.B, equation (214), which contains the strain
energy due to shear at the interface. The critical load was then computed:

1T
pl = 2 gl II+E———’13[<12- sinh? d ]-:-
n o n n

cr
n
{Z(d s BTN d Hcosh ay = 1)} +
n n n
II II\ X [.2 2 12
E™" nd (l + y ) _— [d - sinh™ d ] =
Q’n n n .

{Z(dn - sinh danosh a - 1)}2 (113)

The expression o, , X in equation (113) can be found in equation (220)
and (215) respectively, while d, = gd -
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c. Buckling of a Finite Single Fiber in an Infinite Matrix

If the matrix is infinite, then b = @ . Thus, it is more convenient
that the solution of the differential equation (79) takes the following
form

n= n

Bn (a r) e " sin (anz) (114)

By routine procedures, the stresses and strains are found from the potential

¢ ¥

p

1

S eaem— 1

k T (115)
1

un

: 1T .
where p, 1is the lateral unit interfacial force and € is the lateral

I
displacement. The minimum critical buckling load and t%e corresponding
wavelength are derived in (236) through (237), and are restated here:

11 11 |2/3
PI - 1.9 E na(3 + v = EI II (116)

cr EI 11(1 } vLI)Z

The wavelength corresponding to the critical load is

. Y 16n? gL 1L 11 - vn)z
=3 LD 11 S
& a E (3 4+ v )

The numerical results of the buckling wavelength for a single fiber
coincide with test results obtained from experiment performed during this
contract. In Figures 42 through 60, the critical wavelength and the

I
buckling loads of a multifiber are plotted as a function of ETT , the
E
fiber radius a , with volume percentage content of the fiber as a param-
eter. In Figures 61 and 62, the wavelength and buckling load of a single
fiber are plotted versus the radius of the fiber.

* Equations (224) through (226) and (229).
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Figure 41. Critical Buckling Wavelength of the
Fiber versus the Ratio of the Moduli
(a = 1 x 10-3in.)
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Figure 42, Critical Buckling Wavelength of the
Fiber versus the Ratio of the Moduli
(a=2.0 X 10~3in.)
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Figure 44. Critical Buckling Wavelength of the
Fiber versus the Ratio of the Moduli
(a = 3.5 X 10"3in.)

70




2.5pF

2.0r 9 vl = 64y
% ®vi- 0%
= -
sl @Vt =0
&
=}
i
C1of
-
O
°d
0.5¢
0 i 1 ) J
0 1 2 3 4

(a X 103in.)

Figure 45. Critical Buckling Wavelength of the Fiber
versus_Radius of the Fiber (EI = 3.8 x 10
psi, EII = 3.8 x 105psi, or EI/EII = 10)
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: Figure 46. Critical Buckling Wavelength of the Fiber
versus Padius of the Fiber (EI = 1 X 107
psi, EIl = 3.8 x 109psi, or EI/EIL = 26,4)
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Figure 47. Critical Buckling Wavelength of the Fiber
versus Radius of the Fiber (EI = 2.28 X
106psi, EII = 3,38 x 109psi, or
eI/ELL = 60)
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Figure 48. Critical Buckling Wavelength of the Fiber

versus Radius of the Fiber (El = 3.8 x
107psi, EIl = 3,8 x 105psi, or
EI/EIT = 100)
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Figure 49, Critical Buckling Wavelength of the Fiber
versus Radius of the Fiber (E = 5.32 X
107psi, eIl = 3.8 x 10%psi, or
EI/EIT = 140)
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Figure 50, Critical Buckling Wavelength of the Fiber
versus Radius of the Fiber (E = 6 x 107
psi, EIT = 3.8 x 10%psi, or EI/EIL = 158)
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Figure 54. Critical Buckling Load of the Fiber
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Figure 56, Critical Buckling Load_of the Fiber versus
Radius of the Fiber (E} = 1 x 107psi,
Il = 3.8 x 10°psi, or EI/EIL = 26.4)
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Figure 57. Critical Buckling Load of the Fiber versus
Radius of the Fiber (EI = 2.28 x 107psi,
EII = 3,8 X 109psi, or EI/EII = 60)
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Figure 59. Critical Buckling Load of the Fiber versus
Radius of the Fiber (EI = 5.32 x 107psi,
ELl = 3.8 x 105psi, or EI/EIT = 140)
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D. Buckling of a Multifiber Composite Due to Resin Shrinkage

In this treatment, the energy was derived for a fiber resin cell. The

equilibrium equation formulated as an energy variational problem derived in
Appendix IV.D is

£
éf {_;_ [EIAI . EIIAII] 2 +% [EIII . EIIIII] (p,z )
o]

N
ETFAlL se}dz = Z Fi(“) § Li(“) (118)

with the restraining condition

4
{(1 + ¢) cosp - (1 + B% dz = 0 (119)

o

In equation (118), the first brackets contain the compression energy
] in the axial direction; the second, the bending energy of the resin and the
; fiber. The third expression in (118) is the shrinkage energy of the resin.
i The right-hand expression in (118) is the energy introduced by the external
force. The restraining condition (119) is derived from a simplifying assump-
tion that the longitudinal change of the matrix is equal to that of the
fiber. It must be emphasized that in this manner, the shear produced in

longitudinal direction during buckling is neglected to simplify the resulting
Lagrange equation.

The Lagrange equations corresponding to (118) are

n
(e

Pe + R + A cosg (120)

o——

i}
(@]

Q" + A (1 + ¢)sing (121)

s s
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The factor X is the Lagrange multiplier expressed in Appendix IV.D,equa-
tion (274). From equations (120) and (121), the following differential for
¢ 1is obtained:

1 -

Q" + A

ol |l

—%} cosm) sinp = 0 (122)
P

The characteristic equation of (122) and the derivations necessary are given
in Appendix IV.D* and are restated here:

3 _ 3 ) ) E(k) i
o = -;5 E(p;k) - F(p;k) Rl(k_)} (123) b

To obtain the displacement of the fiber axis, ¢ has to be substituted into
equation (351) of Appendix IV.D. The wavelength is obtained by equation
(302), or by

z = 2z EQ (124)

For small amplitudes of the maximum slope ¢ of the buckling curve, the
Lagrange multiplier becomes, for the first approximation,**

» = - R+8P) (125)

This is a reasonably good solution for the eigenvalue ) . By calculating
the second approximation, we must use equation (350) in Appendix IV.D. 1In
this case, \ 1is the force exerted upon the fiber by the resin.

In spite of the fact that the interfacial shear was neglected, the re-
sults of this analysis coincide with the results obtained by Rosen (Refer-
ence 6). For EI = 10 x 10°psi and EII = 3.8 x 10°psi , where radius
(a) = 2.5 x 10™® , half distance of the fibers (b) = 2.976 x 102 , and the
shrinkage B = 1%.

* Equations (275) through (388).

*% Reference equation (393).
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The values in (124) and (125) are

P o= alel 4+ aAME™ - 199.56
B o= et At gt o 456 x 107 ?
A\ = - R+8P) = 1.95
Q = Et+ BT = 3.17 x 107
The computed wavelength is
3
z = 0.114 in.
w

E. Buckling of Multifibers in a Matrix Under Axial Load With the Matrix
Treated as a Three-Dimensional Cylinder

The critical buckling load of the fiber was found by minimizing total
potential energy with respect to the amplitude of the assumed deflection
curve of the fiber® and is rewritten as follows:

P(I:‘r = ai Rl Sl —kz + n(bz—az)GII [+ -‘3—)2

o
n

where k 1is the unit interfacial force per unit lateral deflection; i.e.,.

@, is inversely proportional to the critical wavelength. Specifically,

* Equations (70) through (72).
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The displacement and stress fields in the matrix are determined by
solving a three-dimensional elasticity problem (see Appendix IV.E). To
obtain critical wavelength, we then take differentiation of Pl with
respect to @y (equation 437) after substitution of k (equation 436)
into equation (103). The expression for finding the value of ¢«; 1is
given in equation (438). Therefore, the smallest critical buckling load
can be found from equation (437) with the introduction of critical wave-
length.
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PART V — SHORT-FIBER STUDIES

During the contractual period, expioratory work was performed to estab-
lish any potential existing in the utilization of short fibers as reinforcing
material in composites. Limited experiments were made to determine the
elastic moduli and strength in compression, and the fatigue behavior of
unidirectional composite in tension. The specimens were comprised of con-
tinuous glass fibers and short boron fibers oriented unidirectionally.

The results of these exploratory experiments are reported in Appendix V.

The results of static tests in compression were compared with results
available from tests made on pure glass fiber and pure boron fiber composite,
and it has been concluded that the modulus of a composite can be adjusted to
any level between that of the basic reinforcing constituents merely by vary-
ing their volumetric relationship at a constant resin content.

The primary purpose of the fatigue study was to determine whether the
cffect of the end of short boron fibers is one of destroying the matrix
material and disintegrating the composite. According to the test results,
it appears that this might indeed be the case. When comparing short fiber
boron composite with continuous glass fiber composite and with 7075 aluminum,
the very limited test results indicate that, although the short boron fiber
is somewhat better in fatigue behavior than aluminum, it is inferior to
continuous glass. However, an additional factor which must be considered is
that due to the higher modulus, the deflections under load are smaller than
those of a pure glass fiber composite.

An analysis of elasticity has not yet been applied to the short fiber

composite. However, the experimental results appear to justify a strict
analytical investigation of this type of material.
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APPENDIX I

PARAMETRIC STUDIES

ANALYTICAL DISCUSSION

The following conditions and assumptions®* pertain to the computer
program which was developed to determine the three-dimensional stress,
strain, and displacement fields in a composite. Also, a discussion and
listing of the computer program are given at the end of this Appendix.

It was assumed that the composite consists of identical hexagonal
elements. Each element has a centrally located fiber surrounded by
resin as shown in Figure 62. Because of the symmetry involved, the
following domains of the polar coordinates, r, ¢, z, are sufficient to
determine the displacement field in the hexagonal element.

Figure 63. Typical Hexagonal Elemernt of a Composite

*These conditions and assumptions are also presented in Reference 1.

85




Tor the fiber:

in

oS M a

oS P s 30°
os.gsl (126)

oc;s,l (127)

The distance, b, is given in terms of the fiber volumetric content, VI;

Vo
. 06
§ = q[o%9¢y1] (128)

At the interface, r = a, the displacements, §i, and appropriate
stresses, oli’ were assumed to be continuous:

€ (a,9,3) = § @93

7 x ‘|
o, (2,9, g) = 0, (2,9, 3) ¢=/,R,3 (129)

At the hexagon boundary during shrinkage and axial loading, the plane
forming the hexagon column containing BD and parallel to the z=-axis or
fiber axls remains a plane because it must be shared by the adjacent

hexagonal element.

Relating the hexagonal elements in Figure 62 to a rectangular coordi-
nate system x, y, and z, there is complete symmetry about the x =Db
plane. Therefore, the shear stresses must vanish in this plane so that

=0 Oi,:o

a;a& 2 3
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In addition to the vanishing shear, the normal displacement of BD
relative to coordinates at point A must be

§x = <

For the shrinkage case, € /b would represent the total lateral com-
posite shrinkage. For the loaded case, it would represent the total lateral
expansion or contraction. Specifying the normal displacement and shear
stresses at the hexagon boundary, however, has introduced another unknown:
€ . An additional equation is obtained by considering that the total normal
sPress on the hexagon boundary plane x = b in Figure 62 has to balance
the external side loading. Because these side ioads are zero for the pres-
ent case, the normal stress must satisfy the equation

¢ b GnZs
S g o7, r/y (15 =0
o o
The conditions for o_ , o__, and § on the hexagon boundary must be

A

satisfied for all values oY yx and z,xsuch that

2

osz{sbtmuw/e osssf

The corresponding values in cylindrical coordinates become
A= b/oo-a«¢ os@s % ,o0sq sl

L , ) \.3\

The relation between the stresses, O < gy’ and Oz and displacement,
€ , with reference to rectangular Cartesian codtdinates™4nd the stresses and

P's . :
displacements in polar coordinates are

o, co-n,zgﬁ - o;"_ou'n,‘3¢ + 03, Mzrrf)

=/ (0, -05,) mem 29 + 0, coa 29

= 0, %@4)—0534&»1,(?

= §: ceoa@P — g‘:mst) (130)
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The boundary conditions at the ends z = *#& of the composite are

‘33(/" ¢J )
cr;* <./t 90).*16}

s

%
y/a

%

n

fi

Additionally, the following shear conditions at the composite ends are
fulfilled.

) S Tox (2,9, £2) rdrdld =0
SS ;(/l P, tL)rolrdp =0
5 g 3E(’14’,-l)/z.a'/w(<p o

S S f{;';(./c, 9, 2L) rerdp=0

For the s?rinkage case, O I and © a5 are zero, and the shrinkage

coefficients B* and BIl are“not zero.” For the end loading case, 8L and
BIL are zero and o, and o II have constant values. By superposition of
the two cases, the total stress is obtained, '

The materials were assumed to be individually isotropic linear materi-
al., The general assumptions for the classical theory of elasticity were
ugsed., From the many possibilities, the approach toward determining the
solutions of the Navier equations by potentials connected with the names of
Boussinesq, Papkovich, and Neuber has been selected. These general and
complete solutions by potential functions for three-dimensional problems
are given below in vector form to facilitate the resulting transformatien to
cylindrical coordinates.
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S

7:7 —

A

e = a» Y (p-2+R)

2(1+V)
vP=-"g L
2o . 2Vl —
v =& KF°F (131)

In cylindrical coordinates,the vector quantities are expressed as

585 +v8:¢.+8,¢e;5

V]
[

FD:%,-"' 7‘35:.*‘3:%3 (132)

¢y

3 @l 2
v = an-?.,*macp«-a*agga
2 3
2 2 L9 L%
V= sa2 1 2592 ""',)3»"

When body forces are neglected, the solutions in terms of the vector
components are

2
§, = P;_ 9(r-v) Jf’-sa
1 2
§.,=7?"4I-V) R‘)(PS
= J ) S

(133)
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+ Fggsj = wull veclor

(134)

Since e, and e, are functions of @, it is more convenient to relate
e, and e, to the uni% vectors & and e associated with rectangular
coordinates. ~

g = g Pt gy
§a="£xmfp+ggm§9
s © £3 (135)

Then, by substituting (135) into the first equation of (134),

V{(Feoop - oind)e, +(Rond+ B cocf) 2y +
A e, ) = wull vector

Since Ly E»y’ and e, are independent of position, then

Va(?mcﬁ—FgMcﬂ) =0
VAR oemd + B cond) =0 (136)

The solution of equations (136) and the last of (134) can be written
in terms of the solution to Laplace's equation.

P .
\% L" =0 ¢=0,42,3 (137)
coad - 73 e sp
M¢+ 8m¢
(138)
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and the second and third equations of (138) can be solved for Py and P2
so that Pi (1 =0, 1, 2, 3) can be written in terms of Li (1 =0, 1, 27 3),

Lo

4

7=l cond + Ly aimd

Fz = - L, <M5149'*1L2 CA7:>§9

P Ly (139)

The strains become

o
€, = _TLSI
€,, = é.gﬁﬁ ga s ;t /
22 5
—'G
€. = 97 33
a3 J .
L (Ll 2 - L
e . = 2.(’!.3905,""9/\_§2 n§2)
-] ¢ )
€,5° < ( N §3 L 3} 31
L2 4o
€, = 2(33 §¢+"- a<p§3) (140)
and the stresses are
Yy E S
L m————— I e +__._—— e..
T, = (rv)(l-2v] ¢ I+ Y

Therefore, from the solution of (137), the Papkovitch functions can be
determined by (139), then the general displacements by (133), and then the
strains and stresses by (140) and (141) respectively.

DISPLACEMENT AND STRESS EQUATIONS

After deriving the general displacements and stresses, equations from
(133) through (141), some of the symmetry and boundary conditions were used
to reduce the equations to the following form.*

*The argument of all the Bessel functions is o X
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The displacements for the fiber
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The stresses for the fiber
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k=43
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Z(I-Vr) '42’10 _-:yl'/é E'(I ))1)

= “GeFVELN 9./ L+r2viemn
Z Z{ /mk F(1-v*) ( )‘L\ F(1-v=) o(/rz;,J.*

7['5 "o

I (~$+n/me/ 2-2v5%mn
/q&’ﬂé (- v'z')( f)In.f/ 4(, y—)ku J'f'

/
[’1%‘/&;74 ey +q:'Z__(_:}J—;9:2 I%J} oo, 3 s

'n/c
o 5 Sl [ AL, v T )
3 = ) ,
E T k ”i 4(‘ V‘) k -1 4((‘})“) -

T [-2+2vI-m q!n
/Z 4(!-1)1') o(ka\rl % (- p3) M,J

273

S ar I, +22t I—J}Mo{k cound +

4 -vT) 41+: ﬁ‘(:-V‘)m

93




el o o SRR e o A e b L il e L - o 2 it e T .
i i . o e - o Bcan . S ” L o il & . Ty T T T T N W R VU, |

k
I I ) r -4*4‘):*"- - s
—EE 0;2 = Z: Z { 4("V ) /I - 4(, )’90(/([‘“-_) +
I re-eviemmir) - -2 X |
ﬂil'n/( 4(1-v*) (/7' )‘L o %(1- pl')o(k J+
I Ay = NN~ .
qz/: 4(,-‘)1'),. lﬂ.f‘l +4‘(‘,'<';,'3§7\_—2.th}6030{/(} Coo‘n¢+

= I ;o7 _Jd2vt
Z"[ﬂmk (x4, 4(!33’) ) o 1{/ vf)mIJ cood g

":I,J
= v I —I H-V"
! -
2(,_\):) '72/0 + E(l-\o’z) o -zvr /ﬁ

o9 o0
(¥ I r R-2vim L -2+2vEf-m
—_—s G, = / + e ]
er = ’n:;fe---:[:/—.z 'q/m/r 4(1-vT) e n=/ ﬁ‘e”!k Hi-vI) e
J i

I ng : :
A nk ?(/-V%AZ:LJMO("& W”b‘n¢

wl 1 & & I [t
Lo —k— i
3 % Z ) Z {H/n" H(t-V I)I"'-" ‘e(‘ V,) '”"]

/

I ran o VE
S + ¥
42/7.% +(i-vE) [”'” 2(1-v¥) 'z:"

I
A mle ‘?(/ V"") =

Z{w@n 7 L s S k) e T ’JI} T

k=13

} coad, 3 coand +

(-pE ’Z/o + i_'c; MTFIT ,ey-r/é (143)

94

e g e e . 2 dded
" E el L G P Th Tty R T




The displacements for the resin
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The stresses for the resin
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y Equations (142) through (145) were then programmed in order to

determine the remaining integration constants and then the displacement,
strain, and stress fields.
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APPENDIX II

THREE-DIMENSIONAL LOAD TRANSFER AMONG FIBERS IN A MATRIX

Displacements which satisfy symmetry conditions (1) can be written

”

40-9% =2 ﬁo[{ﬂlaﬂﬁ[(4—4»-7z)1ﬂ., Ly + Fang (-t M T
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'{ﬂm[ﬂ% FET B M 16 } EdmpEcosny
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A 27+ B 7 A (b9 2
+Ban (-A4IDET + Aoy i 2
+ Boun 7 22 A
~{A(349) + Aa +[B(5-49) +Ba] Lop 1] div
F-0)(ha+ Ba dop &) { caof
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4(-V)§, -"—':,g gp E,M%[H/JMIH ot Lne + Bian Kt + Bapns KmJ

+ Bk T Bt + G-) B T B )} St M
MR

+ go[{-/mk At Lo + Bk, ) cosq + (AT, +Ba4l\/)‘ﬂw(]
e Paaa T, + B ) + M (AaTo + Baky)
+(3-80) (Aot T, + Baako) | A 2
M PoaTo Bk} 2 eos Zj

+§02(:—:o7)[ﬂm,%”+ By |2 cosndf

+ &(f—&ﬁ)[ﬁb + B\;%/&] i (148)

where /q4_7z = /qjﬁﬂ (4“4))—71) "Hﬂ 71/
Bsn = Ban (4“4174'%)*5% 7, B ::4("‘1))5::1"3

and where I, and K, are modified Bessel functions of the first and
second kinds and order n with argument KM being omitted.

The first numerical subscript of any coefficient in the above equa-
tions refers to the term contributed by the corresponding Pi (i=1,2,3)
and the first two subscripts 12 or 21 by Pl and/or P2. The coefficient
without numerical subscripts refers to the term contributed by Po.
Therefore the four Papkovich-Neuber functions in cylindrical coordinates
have to be considered in the present analysis,
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+ VM Mzné Tt Bok KJ} eoSnZ +{H3M[% nﬂ'(&%t“%n]
- Binﬁ[{%Kml' 22 ﬂyt")K,J} Z A M Z|cosng
+ é[{ i ALA T, 30-00T) B M, +G-20K
F A ST, +Bu K, Jeosoosu
+ { Ry mmk I-30-0)T]
— B M [—,%”,TKO +3(1-22K ,H { dw{ ebSp 2
— {45 AT -(-)L) B (57 wohk H3)
— Al 2T, -—/fr,,] + BJ%KI +/,u2k;]
— 20M [ AT, + B;MJ} cospLZ
(Al AT Bl eI 2 4o d
45 { Ry (- DA 2B DX R 180X
— B, -4 + A, E‘?%”ﬁz(% DRzt
+ By [P L (DA Z"‘]} cosng
+ % [aVA,+B,(3-20) + B, fdalﬂzjwst(-k %(MV)MQM(
t A “54}[2"‘6?))143 + B3 (2’7}5" +QV/%/“Z> (149)
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—41—0’ %o > [{ Aiant(@-29-2) T+ Biams(3-20 -7ty

+ A o (- V+ )M Loty = By (B- 20+ 0) M W

+ 28 (ot L 4B o)~ F (-2 Ao Tt Bt K %]}

A + %{/]MI” + Bk /(x} Z oSk 23 i i
— go {/M[ (-29)(Ak L+ Bis K, ) +flas Lo + BagK. o]

inf = H(-2)[Asg Lo +Bag o] ‘(%LF}W/“Z
+ 5 VA fls X By 1| 2 A1 Y

(153)

&Ev_a@' ,g %, [{H,m;[,ﬂ/zl',, :*QWIJ*HJMW”IM*&/"LJ
+ Bm[w Ko~ 20M Kn]+B&,.,,é[/u 77 L)) /K,J

o J ATt Boih]+ 4 Rt Bl 502

+ ¥ Rong Tt Bonkln § 2 Mimpt 2| 205 ”‘f
3 [{W@%L AR T,)- Byl oomh+ £ /fow Ko
22 (Ao T, + Bas ko) costf
+[/-]a/e(4’}"1:7” WL)Bos oyl + 755K 24, ) 2
(W4T, + HL,) + Bayg(wn K~ 29k
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.

+1* (Ap T +B4K.) +§('534L+534 Ko)} cosuz
+/42{H3&I + B34 Ko } Z/W/'LZBI
+ 3 [0 a4 2] A 0 e
7;‘{[/9: +B) + By f%/%]”"s‘( + B:‘fm‘(}
+ Az + 2(1-0)(As +B; Log 4) e

Displacements and stresses as given above can be applied to any
particular domain of the present problem by suitably specifying arbi-
trary constants,

To satisfy the periodic condition of matrix and loaded fiber we
take in (II-1), (II-2), and (II-3)

=6,/2,18 24, - (13

’qk = Bé = /q = 0 j::/,.,? (156)

Satisfying the loading condition G-; (ny. t 1) ,we chooae in
the expression for (see equation II-9) the 80 that
therefore, 0~33 /u WS/“ =0
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‘ AT - >
/MI :‘Z_Z— /&-/,?,5', ch_.

| H3M = HM o (157)
e A+ A + (FPDAS, = 0

I _alI-oD)%EGT
EI

(158)

Rerce, G-V A5 +ay s =

In addition, the unloaded condition, O;;(}'z ‘C_[_) 0, of domain 11
leads to

I__ KT . |
M :ﬂ k=1, 3,5, £c. (159)

B | L
/?37u§=== Isgquﬁ':: /?é:; 2= Esg;':2232§51:::]agf:: 0 .
JVI(?ZH)H‘:E,, +(1-y") ,qBIﬁ =0 (160)

| (f'))l)rq;[ +&VEH:| = 0

ST PR
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The displacements in domain III do not have any periodic property* 1
in the polar angle ¢ , and we discard the terms contained in the , i

J:
and g functions in II-1 to II-9 characterized by the factor smm{ J
or coSntf for domain III.’

x oo e dE 5 R v,
Aiank = Bramt = Aaimp = Bayms = O

I o 1§
Pont = Bk = A = Bt = O

(161)

i1 I h /8 y i i
) Az = Bian = Azn = Bsn = 0
I I
Iqé.-n = 84-72 = 0

The vanishing of the axial stress requires at the end of domain
IIT in equation (II-9)

! /%I-_:-g—‘rz’ /é..":./, =y S; .db'. (162)

H:( '—"—B:fQ :::B;: =B;£= @,

(163)

Hf +B = (VB8 + V%45 = 0

§ *As far as a hexagonal element as shown in Fig.30 (a) is concerned, "
displacements of the six unloaded fibers possesssixfold symmetry. How-
ever, an elasticity solution is not valid for a discontinuous medium.
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APPENDIX III

DISPLACEMENTS AND STRESSES OF THE MATRIX

Using equilibrium equations, Ref. 6,strain-displacement relations
and generalized Hooke's law,the following is obtained:

9.?._2_3’12:—— (164)
/—&v”afa+(v )c-?)g ¥ 5 =0 S

38 ‘7,__.1_. R 28 (165)
/—suf’zacp )5t wop=—0

/ 2 (166)
f~ay® az TV §3”‘O

where v is the Laplacian operator defined by

<2 2 2
2 w2 | 2 _,/...a__. o (167) -
V™ =22 T hax Tioge 52

and where € 18 the dilatation satisfying Laplace's equation

vze = 0 (168)




Since (168) has been derived from equilibrium equations (164)
through (166), we may solve (164), (166), and (168) for radial,
circumferential, and axial displacements, 51, ;2, and 53.

We seek the solution of (168) in the form

e = £, (L) Y 4inOinZ

Substituting (169) into (168) yields

' <12:4;o _4_._1_.CJ‘F;2 o (f, + __i_‘>_f; — ()

} dez e dep p?
E where P == dn.)é

The solution to (170) is given by

£,()=A,T,(P) +B K ()

where Al and B1 are arbitrary constants,

Introduction of (169) 1into (166) gives

8%, 105, |2 , | 3%

em——

P2 PP P2 ¢z Of 522
= C[A L)+ B K (P) [ cosol 2
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[

— 17
where C O‘u(}—-&vﬂ) (174)
The solution of (173) 1is written as
53 = t/g(p)wac(wsoz,,z (175)

. From (173) and (175), we obtain an ordinary differential equation
for 4)3 with the solution

Y (P) = A P +B.£:(p) +HZI,((J) +BzKl(f?

176)

where Az and B2 are arbitrary constants and where

= el 50Ky of Ty
‘Fr(@"'C[II\P) j(_f)_ldf) K'(PJ-ZZ{% 177)

. . "TOKE
£ =[] Kok ”;‘fm‘” o]

The function ?o(p) in (177) 1is given by

?o((’) = Kl (P)II/(P) "I;((’) Kl’((’> - (178)

in which primes denote differentiation with respect to (O .
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By the definition of the dilatation € , we have

—9—5—2 = fa[ )69}‘()%{, (179)

Substitution of (169), (175) and (179) into (164) leads to

..._gL 39 +._LG"+_2_L+ / {

202 f’ 2P 2¢2 o/,. aza
=[AHP) +BEP) +he 220 4B, AP etz
(180)
wee  FO=CLP + 5T+ 0 Fi(P)]
: ' e (181)
F0= k) + 25 [KP) + oty (p)
Assume the solution of (180) in the form
£, = 4 (P i Ay Ol Z am

Introducing (182) - into (180) and changing the variable result in

(pdh) +4 ’(PLP. +53)(ph)

= A (p) + B,ﬁ,(p) +Aa -l‘gf- +gz;—"*_'<(3_@ 18)
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whose solution is

! $(p) =-{Hﬂ, fs(©) +Bifa(p) + A4, () +B.F3p)
| FRIEBKE)]  as

where A3 and B3 are integration constants and where

| J A0, 2050
| ﬁ«‘f’)"-—['(f’)j 40 90~ (f’j I‘g,,(p)

PIGING
f o= I(ej M’)d K,(yfffgo(;)f’d

{,(f)—'&[L(p)fi((,%%)@JP K:(t’f gqo) ]

"0 LOKB
fp)= o?wﬂ %f(o p= KKU P4 ]

Substituting (169), (175), and (182) into (179) and integrating
the reault with respect to ¢ 1lead to

é,_ = ‘{Q(F)W((dez + Go(P) Z) (186)

(185)

| were 80 =-[A] £ TO-E O +oHP)+BIEKD-F 48]
: + A {pT )~ ] +BJ k@£ }-A,T0)-B k()

(187)
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The function (&, in (186) is an arbitrary function to be deter-
mined. Now that the #Z-‘ plane is the symmetrical plane, we have

which requires

Go(?’z) = /0 (188)

Stresses , 0',',1 ,of the matrix are related to strain é by
generalized Hooke's law, as follows:

N - ‘ :w e
0z T'“o?('/'w")[(né“’) toTIaEl aw

where S“ﬁ is the Kronecker deita,

By using displacements (175), (182), and (186) together with strain-
displacement relations, stresses (189) can be written in the form

= Ty P nOn 2 4=1,2,3

>,
>,

02 = /Z«‘/a(@ MSQM{”Z

(190)

/573 (6),04;}0((%5 Ny 2

’L:,g(‘o) oSy ISVl Z
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where “l;; are functions of (—’ only.

It is seen from (175), (182), (186) and (190) that displacement com-
ponents zl and 53 and stresses 0’;, » (22 5 0335 and 0,3 characterized
by a factor 4sm{f vanish at the ¥z — plane (or the neutral plane), are sym-
metrical with respect to the 4-2 plane (or the symmetrical plane), and
have maximum values at the 4z - plane for constant 2 and Z. The dis-
placement component and shearing stresses (;, and (;; characterized
by a factor cos{ are symmetrical with respect to the xZ-plane, vanish at
the 42-plane, and reach their maxima at the XZ-plan: for constant
and Z . Obviously, these properties satisfy the physical requirements of
the bending of the matrix in the present analysis.

The arbitrary constants Ai and B, (1=1,2,3) in the expressions for
displacements and stresses are to be éetemined by boundary conditions.
The outer surface of the matrix is assumed to be free from stresses,
and hence we have

0;.:?«((')'/(() Z>:- 0 | '4‘=/,;2,3 | (191)

where , el — (Xn 'é ' (192)

The continuity condition of the interface on the components of

displacement in the directions of Cartesian ¢oordinates X > 4% , and
2z requires

51 (B, 2)cosq — £, (000, 2) ] = O
516, Z)M(f)'* {1(&/‘(; 2)005‘( = U AmOnZ (193)

353(02,62) = - AT Ol COS O Z A/

vhere o = O A | : (194)
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The condition (193c) has been obtained by assuming that the angle of
rotation of a fiber element is small compared to the unity and that a
normal cross section of the fiber remains normal during bending.

Substituting (175), (182), (186), and (190 &, d, e) into conditions
(191) and (193) yields . .

TU;(PI): O .2:/14213 /

% (F:J
5 (02) = — A1 X

The constants A, and B, (i=1,2,3) in displacements (175), (182),
(186), and stresses h90) c}n be determined by solving equations (195)
simultaneously. Each of these constants is then characterized by the
presence of the amplitude 4/, as a factor. Therefore, stresses at the
interface can be written as ‘

I

(P . (195) \

0 (02,42 = U O o amCin 2
(Tfa(&/‘(; Z) = 1s 07; cost( MO(”Z (196)

073 (P4, 2= Vs 5 am co5 0 2

[ [ (-]
where 0.,, > 072 , and 0';3 are functions of )71 s EI, a, b, and
(o §'%% -
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APPENDIX IV
ENERGY SOLUTIONS

A. ALTERNATIVE WAY TO FIND SMALLEST BUCKLING LOAD AND BUCKLING
WAVELENGTH OF FIBER FOR MULTIFIBER CASE
The strain energy due to longitudinal shear along the fiber
surface can be also found as follows:
| B E gy == Ty*
zjv T5 S VY =365, (G5 ) dv
— Id JT {/«)g" sinh(zsyd)
= o =X Zom () -~ X ﬁ) wh (n h)
2@ Up Jdy | Ta ( Foid +simhfaad) S7
AS, | — Cosh(@elnd)
_(Rw/a) ( osh¢ )(d”@sf”wﬁ)
(2ud) + Sinh (2, d)
(%5,/Ta) Sinh(20,d) i
— "—4 (o, A)cash (o« .
(2,d)+ s;nh(zo(,,d)( PA)Cash (on h)
* Cas (s,2) dz dA
— ( Iz (L)( 2%,d 7 Sink(?dnb)‘s"nh(.zanq)
2GT A\ 21\ 20,4 4 sinh(224,d) y
- oﬁob"C{nJL
z )
2
1 /"'CUZSA(‘ZO(MJ) ,[_L 2o s 5,‘, b
+2[gza..d)+s;nl,rza,al 3(_( hblif 2kl
| —(°—(f'3—b-)3+ “‘—332’——8’—((2«,,4)"+2)6in6(214)

— Flob)cashiz,b) + 4 (da) cosh (2, q)J
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n Sinh(2Xnd) - 2 .
t3 <za(,,d + s;nA(.zd..J)) ] [ 'SL([Z"("") 12) Sinh(24,b)

~ g ((220a)" 1 2) Sinh(2t,0) =3 (o, bjcosh(za,)
+ZL (X, a)c‘osla (Zoln@) ~ @%A)‘a 2 @éﬂf]

_ 200,d (| = cash (2tud))
(Zotnd + Sinh (2o, d)*

. [ 2’- (cotyb) Stnh (2tyb)
~ H{on@)sinh (204,8) - # cash (2,b)

t coh (26,0 = 20t 2t

_ 26,4 sinh(za,d) Ay
(20lnd + Sinh(2,d))" [ 7 (% b) Cosh(2a,})

— 5t 8) Cezh (241, ) ~ #Smh( 20, b)

/{_ 6m(20(n 4)]

1 (| —cah(z,d)) h(z,d)
T3 (zft d + smi,awf)) (b gcchin

(2 + 2) csh potnd)

~ H(elnab) S1uh (20,b) + 44, 8) Sinh (2, 4)]

(197)
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Then the expression for buckling load of the fiber is:

-3

4 d o, Y
2G T a* (198)

P; = ol ETIT + on Ao 4
where
| Y e { } of equation (197) )
. |

Combinations of equations (197) and (198) yields

ﬁ: == d"lEII i E"m{[(z‘\’n d)*— Siul (Za(,,J)J

f [_ 2 siuh’(2d,d) ~ Sotyd + S dchlaig)

— 4 Sinh (20ud) Cash (2, AV 25in} (22nd)
+ 2 Sinb(zmpd) cash’(2ot0d )j}

+ E'rdt /+p‘) { L(zcx.,of) ~Sinh (zm.dj

< [ 2 5is (2, d) ~ Btod +8,d cahland)
4 Sinh (2atsd) cash(ax,d ) 425inh (24,
4 2 sin (zd.,d)asl;‘(za(.,d)J zj

(199)

4 SMALLEST BUCKLING LOAD AND BUCKLING WAVELENGTH OF THE FIBER

The smallest buckling load of the fiber can be obtained by minimizing
PI- of equation (198) with respect to o - BP /aa =0 goes.
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20, EXI T+ E"na{ [(2d)"- foi(z;( Sinh (20,d) cash (226, d)
| + O(y,‘z Slhnhz[Zo("d')Jo

- [-zsfnl,j( 20ty d) — 8oty 1 5nd Cashiaa dy
-4 Sinh(2%, J) cozh(22d  H-2.51h (24,d )
+2.5inh (2, ) cosh™( 2000 d )J"'}
- Enn- 4{[ (24)’-0‘;; ~ oty Sinh ?—(-2 oy J)J *

.[-_251‘%.3(20(,,&’)—80(..4 +8yd cmh (20,d)

~ 4 sinh (2et,d) cash (2ot,d) +2Sinh (2etn d)
+ 2 Sinh (2ot d) cozh’ (22, J)J“Z.

: ['- 12 d siuh™(2,d ) Cezh(204,4) -84 +84 cosh (2e4,d)

" Hbd % Sinh (200 d) -84 sinh’(2e0,d)~84d eesh(ud)
141 eahlzt,d) +4 d eashilzady 8 sinhand) ca,z(z.,{,ﬁ

+ESnd U49) ™! { [(Zxad) — Sinh (20(,,4()]2.

.[- 2.5inh™(2otud) ~ Sotdl .85, ] cesh (2etad)

.._,L/.sfn/; (.Zo(.,eb eah (b(,,J) +257u) (—2"614) '

42 Sl‘nh(Zo(,,a/) CosL'L(ZdnJ)J-ZJ;.
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A ST

{ go(nd‘( Sinh ot b)-Sinh24a) 0/2: )

)
2 )z[ b cosh (200b) —0.cesh(z4a)~b +cv]

=
5 [ | — cosh (zo("d)J- [.2' Sinh (-20614)]'
.[_81.((20/,, )+ 2)Sinh 2el,b)
- H@xwa) +2)sinh (2)~Lat bezsh(24,b)
+5 8 cosh (24,0) ~ (“-'3@ + ‘%—“f]
+2L[/~ coslh “"‘”"{]2‘

: [‘sL("*"" b sinh(24)H-F(eh)'t Jeskhiagt)
& (o) Sinh{ 24,0)- (o4 2) cabiznd
_ f crsh(2x, b) — o, b* Sinh (26t })
+2& cah (24,0 ot @ Sinh(22,)
b el |

F[zd sid)caod) |

[ (b1 2)sinh ) (24 +2)sih (20,2)
~L atbeah(2at,b) +§(ha)crah(244a)
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+ djb - {—o{;ﬂ);{
+ £ Sinh'(200,d) [ 5 (4otuh”) Siuh (20,)

+ -}f}((zot,,b)lf- 2) cosh (24, b)-

- -SL (4,0") sinh (24, @',%((24.“)11‘9%‘:(%‘})
_la Cash(22nb) —ot, b* Siuh (2e,))

& cosh(2d,d) +ot,a” Sinb (2u2)

+od B - ot ]
[ 24(I-cacud)hdsiiiaad]
; [.ZL(oz.,L) Sikth (2oyb) ~F 44 Sinh (24,)
_# ceh(24,b) +4L 04311{20(,,49-,2(0(,,[,)27‘1(‘(5:3)2]
oy d (|- crs) (zo(,,a!))}

_ [2
'[ MBZC@L(Zo(ng)—o(HC{Z'CBA(Za("q>
~ Lot b + Mnaf]

~ [,z d Sinh(3a, d) + 4, 4* Cask(zo(nal)]'
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; [%o(,‘g cosh (26b) - Ly, ch(20tna)

= Sinh (2, b) 4 JJF Sl'nla(—?dna)]

~ [t d)sivhttnd) ] [od szt

- oz,,a‘s|'uL(zd.,a)J

35 é' [z d cash(2,d)(1-cah (24,4))
—2d sinh*( 20,4 )].

[ ((264ub )+ 2)cah(2tb)
~((20tn8)" +2)Ch( 22004 b Sinh(224h)
+ 4oty Sinh( 2, a}]

bt [(/~ canhy (204, d)) siwh (2e,d >]-

~[4o<.,a‘c@4 (24,) #2b((2e48) t2)sinki2)

Aoty Caph(2o8) -2 a((2,8)'42)Sih (248)
—ltb sink (2e4,) — 8 olwb™ cah(2ob)
+Haisinh (24,8) + 84" cosh(24, AL)J}

+Emd U+ { 2[(z4d)-sihztd)]-[2d 24 wz,wjj.,,(;'.
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. [-— 25iwh (20nd) - 8 tud + B kd cath(200,d)
— 4. sinh (2%udy cash (24,d) 1 2 Sinh (260 )
+ 2.5inh (2od) Cizh’ (24,4 )] = i

~[od) - sinhtze J)JZ- o

-[—2 Sinh” (264, ) ~8d + Setod Caah (224,d)
—4f Sink (20tnd) cah(ud) +2 Sinh ( 2et,d)
+2 Sinh (gud) cath Crod )] -

b —2[(,20(,, d) —Sinh (200,d )j E ot

P '[-—‘Z s""l"s("zo(" d) - 80(110’ 1 80/»4 C“BI'Q"(MJ)

~ 4 Sinh (Lotnd) cash(gu, 4) +2 sinh Retyd)
+2 siuh(26,d) cah® (2, J)J .

-[—/z d Sinh (2, d) cosh(20,d) - 8 4

| +8d cah(Zetnd) + /0tud*sinhtzn,d)
I | — 8d sih' Retyd) —8 d cash™(o2et,d)
44 coh (@) +4d cah’Rand)

+84 s;‘nl,z[,za(.,d) eazh (Fetnd )J} :
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4 2
2

Jri’[l ~ Cagh (,zoa,d)].

. {( oy d) [S’i:tt: (24b) = Siuch(Rtua)  Olb-d, Q}

‘[g'( Rotab) + 2)sinh )~ 12)sinbizas)

~ L) cosh (o) o) cash (262)
_ (olyb) = (et ) J

3
+ sink' (2 4)[3% (24,4 2) S inb (24, h)
— 3G+ Sz St byah (o, b)
+ Soa)cahlze,a) + (bl e0a) T

~ 20604 [ 1= cah (2, d)]-
i
5 [:ZL("(" b) SllnA (ln b) —il-(o("a) S'I"lr(ofd“ a)
,# Cah(Reth) + ;;(ca;l,(oza(,,a);z(o(,, D?z(a(»@j

- [(2o0d) it (ozo(h,,()J.

.[:I{ O(n‘) CGSL! («510(.11)) "“_‘ZLO(,,ZU 6531,('&,(”“)
- 1‘; Sinh (2o,b) + 7# Sinh (2%, a) ]

128




+ [ (-cohand) sk (s
: [((,20(., b)+2)Cah (%, ) -(r,0) 12) cski4,)
~Hot,b Sinh (24,b) +6‘0(»45f~11@7"(n‘9j}

— (200)

From equation (200), we find the buckling wavelength &cr = 2w /aj .

Therefore, the smallest buckling load of the fiber, (PI
obtained by substituting L.y 1into equation (199).

s, can be

Cr)min
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where

d

n

TR LY e T TT—

BUCKLING OF A SINGLE FIBER IN A FINITE MATRI} UNDER

AXIAL COMPRESSION ,
INTEGRATION CONSTANTS AND LATERAL DEFLECTION

By applying boundary conditions (111) to equations (83) and (84),
and solving them, we obtain the results of integration constants

as follows:

é’) = dd?i“iflﬁi *

C. ______-( é@) [ Ay d J:Si n;,‘szjfh d m}
= __@é&) Sinh’ dn

)

Ta dw = Siuhdw

o= nd = Fl-a)

H

(201)

(202)

(203)

(204)

(205)

The relationships between displacements and stresses of two-dimensional
elasticity problems are quoted as

I T
x e z
B3
| =0
. 130
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P

Therefore, the deflection in re-direction is

& =[(%-2%)n

A = | |
5 B (<o) ) dut Sinhdu cahdn
" ETa g’ 3 Ol [5 o Ay = Sinh dy
-(cl,, sith dy —cazhd, 'f'l)
1 dut sinhdnCeshdy _ /
v Cin,- "SI‘K«AIJ» (%LJ" /)
+ fs‘{ T (d.,coslndn—&'»J;JJ}
- Sin (04 2)
‘ _E__m ' m[ "—SI‘nLtGIn ) N
+EL7FCU,,,=, {é: Q+ 6’;"51‘»1)25’,‘ 5“11! J"'

_ JK +Sl‘ulr JJ( CBLJ
de— Sinh'dy
siuh’d, ( : |

+ J‘:_ _ s,‘"j, ,_d:\ dn%‘\ Jk'él“‘@o {

-Sin(dnl> (208)

< .d.sikhd,

and the interfacial force per unit length of fiber per unit deflection
is

» ﬁ) = él% (209)
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STRAIN ENERGY DUE TO LONGITUDINAL SHEAR AT THE INTERFACE

The strain energy due to longitudinal shear at the fiber surface
is defined as

U6 =J;/i_ 3 615 dv = \f G)d\/ (210)

~3%/ f {“ﬁ det& s

4 i

+&m( Sinh " dy )(O/Mz)CBL(O(,,’%f'

Jn fnhzd;.
e (of,2) d di (211)

Integration of equation (211) gives
— #&(§,)d di V.
Us ..___ LG?;T% O(h( >{( dy - S:‘nh‘dn)o[(&“/’(‘@("b) -
- s:‘nl.(zx..@)/ ~(atnb - 0@/2]
_l(cf +SluH (’J&H )
2~ —Smhld

[ (2,b)+.2) S 2eb) —
Cla/ a) f—z) Sinh (o'{dnd)
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U

— % %L(Zdug"' o*g‘q Cali(do(‘iq)

- () cmf]

*%(}5"‘@‘“&‘) l (2 t2)simbist)

- 8 (pZo(,,cO -/-Z)SHJ' (204, 4)

-5 Olnb Ch (4yb) + 523 hitnd
) _ aa)

'(a dn” >,(4,,+s;hu,eau.,

nL—-Sl‘h‘!uu d:'-SllkI)z—Jl’,
[D‘_Z‘z Sih(2t) - 22 i (20,4

~J cohleb) t f cosh (22,4
—2W,b) z(a(,.a)"‘J

-f-(/ J"L ( SMA Oln
dl“ Sl‘hlfd a/ = —Siu) a(

Slnb ) (2 b) 2% coshiz,
[ 25 collous) 25 enices

~ 3 sinh (ﬁdhwﬁsmkmﬁ

(A4 Sinhd,cshd ) sinbd,,
3( d,'-sinh'd, dy - Sinhdy|
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’ [ (’z“nb)l'f’l) cahA, B)—-‘MLSM,M
'{(0'5‘..05) 12) cash (:ﬂx“}W.ﬂSMW

(212)

BUCKLING LOAD OF THE FIBER

Total potential energy of the fiber during loading is defined as

Té-a = Ub +Ue T UF"’QS“W (213)

Combination of equations ( 70 ), (208), (209), and (212) yields

a
L AT
Z?<I> Z ( ,::,)LO(ML (214)
where

X 2 { } of equat4ion (212) (215)

Minimization of total potential energy with respect to §I
gives critical buckling load of the fiber.
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I r_t | Ad 3
Fct’ e E + S +ZG'T(Q (o(., X (216)

where

N | . 217
ol = Nnir , ( ) .

L

Substitution of equations (208), (209), and (212) into {216) results.

R = e BT il
=
o[;)_ (d" —S;MJIJAJ(CaLJk'_ />J |

+E5nd (1H5)” X (d ~SmLLal,1)z.
.[2(&’,,,*51‘»:‘,41.4)((:03770’“—/)2] (218)

SMALLEST BUCKLING LOAD AND BUCKLING WAVELENGTH OF THE FIBER

The buckling wavelength of the fiber is determined by minimizing P:r

aP!
with respect to 0n 5 i.e., Zcr 0

3

(219)
From equations (212), (215), and (219), we have
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_ 20,E'T "+ E'ra { d% a,,'zsinlf(o(.,J)-zJo(; (SihL(d,,J)Cc%'q’)}.

| { 2ot =i (ot o) el )f"
—Era { And® — o, sinh ek, a()}-

| ~r2(o(.,af — Sinb(end ) (cash(ctnd) ~ ;)}—-z

il

{2 [-d(1-cahd)+ dsfnu«.,d)@«"d-s;.m)j

\

f + EINJ ( I‘I'Px)o(”"{z (o(p.J— Sl’nlr('o(no())(c@[,(a(",(),/{?ﬂ,z

{ o, d y [ Sith (2eb)~ Si b2, )2, - o, a)]

(ol i [b cash(ohh)-acahizas) — b+ /2
+(ond + St uhlotud)csshictnd)-(d+d cashlotd)
tol sink"bed )« [ 212 sinhab)
- 5 (20" + 2) 5ih (208)
_12"_5 cash@imb) F # eo3h(Zotua)

(b L (oln®)’
ENENE J
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+ EZL (O/HJ'F siuhd) C‘BA(“'L:J))Z'

[ ofg_lg"'s,‘ula (2elh) + -,ff((o/q b) +2)coshiaa, b)

ol
2

~ £ cahhh) ~yb” Sinh (26,h)

Sinh (3%8) — 7 (€949 cah(2et,a)

+£ cozh(2et) + o Sinh (0a)
—C>(m2 63 "/' O(h?—as]
+[2d sy csshio cl)]-[@%@siubw@

— (Qﬁ(l%ﬁﬂsfuh (Jd,,a)-%‘i’ CABL (ﬂdnL’)

ot ' sy
o5 caleug) 1o BT |

- g 2
b sinb*d ).[o_(%s;,,me;_—;i‘sml.(m

+ ,J,%((azoz.,b)ﬁ 2)cash (Retub)—Scash(24b)

_7% (208) +2) eash (20ha) 15 cahen)

_O/nL‘LSI\Mk@(O(nB) + O(h QISJ‘ML ({an)
ol b -l & J

‘“J:So(.,z'd 34 200, 4 Sinh (6 d) czh (A, 4)
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£ ol AP sinhd) a'a"aljmtf(a/qdﬂo
[°_<f'~ Sih (Leteg) = 25 51 (20004
—J Cash(2% b) 47 cesh(2aa) —zmkﬁz(d..oj
= [(«,,a!)%r (ot d ) Sinh(etnd) cosL(o(nA)J-
.[danwL (2dnh) —olnd™ Cesh (204, a)
—Yotub” + Hotnat :I
+ b [ Sink Cotudy ot sinbicdcalind}

. [o(nl) ceeh o)~ oyt czh(2otna)
~ o Stk (Zetub) + -Sinch( Lot k)J
e d skt )
[ otab” Sikh (axnb)--o(..a‘sint,(adn«)] |

—% ['sinh et #2004 i e ) chad )
+3 sinheod)cal et siuhfeend)f

[ (2]t 2) Cesh (284} - Yot Sinh(Zelnb)
{t2) i) Hitus b9
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- 2’— [o(,,c( Sinh Bud)+ S l\hlfgfa/“ d)cah &, ”/)]‘

: [ b s tub) + (200 ) )Sinh )
—olnd” csh(Bhya) —A(2(0,9) }1) Sinh(24,8)
—b Siuh(2eb) + A Sinh (2004
~ 20t e 3h(206h) 12,8 o) (azd,,q)J}

~E'nd (1427 {[Zdn (ard- Sinh(e ) coshiad) — )]

'f‘vZO(n‘, [.2 oy (64 J*Sl'h(dn ‘0(“3»4 ("(n‘b "'/2] _‘j

. [ZJ(‘(CosLo(.,d _/)z
et )EZ},

i (( s 0{)’7‘ [sfnl, (L) =Sinhlon®) o, ol 4. ]
. 7

a 2
# L [t + Sivh o) (e d )f.

[ (2t 2Dsidkzt)-cahian
~ L+ sinbzend) + %2 cohized)

~(CtbP~puaf) /3]
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t - Siebfoad) ot ) sch (24,)
~ (2ta+2)Sloh )

—%b cogh (b) + %2 coh(tug)

- &(nLy "’(D(na)s j
3

< @(" 4)" [0(,,4 + Siich(ot,d) cosh, J)J =
.[.O_(.Zuisi h (Zolb) — 0&2&5:@& (24u2)
—-,7% Cah (4, b) +;,’(c:5h (2 t)
2 )"+ 2(a)" |
+ (ot d)” Sinh et d )-[i’i‘gé Cozh (zety b)

— Escah il fsidées b it

~ -81‘[(0(M d) +51uh (e, d ) dcsl»(é’»ffﬂ '
-Siwh” (otd) - ( ((2ot,b)2) b))

— (2otn )t 2)cmsh (204,)
— Holub Sinh(db)+ 466a)STnh Wh‘ﬂ

(220)
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C. BUCKLING OF A SINGLE FIBER IN AN INFINITE MATRIX UNDER i
AXTAL COMPRESSION i

INTERFACIAL FORCE PER UNIT LENGTH PER UNIT LATERAL DEFLECTION, k

Now let us take b——>®,0r the matrix is infinite in size. ;
Thus, it is more convenient that the solution of differential ]
equation (79) takes the following form: i

TSIl Ot s ek
$ =) &7 [ A+ Bt C, e
“n={

oL :Dm () e O(")?'JSI'M(%':Z? (221)

The stresses are

oo

Oy =) [( At 2B, )% 4 B lur)e ™™
" HC,-2B) e D™
"Sin (oly ) 2
O;‘x—': ~°Z° [Am e %t | Bm(dn’&)ed"k
" +C, e +3m(o<nh)e'““}‘]sm 62

(223)
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G

I O(n)L o(“,l_
Cs = [(Am+ Bm € +Bm(0("&>e
“h= :
—oly —onh
~(C,R)e D™ |
Co (0(»1%) (224)
Since when r = = , all stresses have to be finite, then
AIPL — O (225)
B, =0 (226)
and

/
C,m = ém/ﬁéb (227)
;Dm = 0 (228)

Therefore, the displacement in lateral direction is found as follows:
N—— P — n A
gl T -é}' Z { ’ TM € S(M.(O(Ki) da

—.))I—\{bc %e—dn&sia(duzl)djl'}
- L—EEAZO _i'.'l; Sin,(o(“,%)

EI pomr HAwTT A (229)
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=
[
i
l
18
Mg
R
R
L)

or

O
b, = ok Z o, (231)

SMALLEST BUCKLING LOAD AND BUCKLING WAVELENGTH OF THE FIBER

The expression for buckling load of the fiber is derived as follows:

P:; == O(HZEIII n o(n—/ FC(L/%_ISIEJBIJ (232)

In deriving this equation, the value of k in equation (231) has been
introduced.

1
Again, ¢ is determined by minimization of P _ with respect to
n . cr
a of (232); i.e.,

h
@E‘i — 0 (233)
" ooy

which yields
— 2 E5r &'(3‘“3‘) (234)
2B (R

Substitution of (234) into (232) gives the smallest buckling load
of the fiber.

18
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T E'ra (3% % . I
(PCr)m.m —[ ZEtIx(l_));)z] E I—%
+ [ E'x a(iﬂfl) ([ E' (3425 ] ass)
ZEII (I__J\)I)z l (l_)):!r)z j

or

N 2. % [ Ernal3+F) 7%
(Br)m.‘n J 2 [ E'r (/-))JL)‘J (236)

The corresponding critical wavelength is

— 2T E'naf3t) % -
te = g, M[ zE‘f{Hﬁ")‘J o
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BUCKLING OF A MULTIFIBER COMPOSITE DUE TO RESIN SHRINKAGE

Because of the smallness of the cell diameter compared to the
length of the fiber, we can make some simplifying assumptions
such as:

1. Fiber cross section deformations due to stresses perpen-
dicular to the axis of symmetry are neglected.

2. Cross sections remain plane after deformation.

3. The shape of a cross section is maintained after
deformation.

4. Cross sections orthogonal to the axis of symmetry remain
orthogonal to the deformed axis of symmetry (no defor-
mation due to shear).

Figure 64 shows the deflected axis of symmetry of a fiber and its
associated hexagonal cell in the z-direction, An arbitrary point

P at the nondeflected axis has the distance 2z from the origin.
After deformation, Point P rests at P with the coordinates §3

and §1. Similar is Q, the end position of Q after deflection. The
point X is an off-axis point of the elastic medium. It will be

at X after deflection. Because of assumption 4, the line XP must

be orthogonal to the tangenial line of the deflected line of

symmetry at P.

Figure 64. Deflection Geometry of a Fiber
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The strain of the element Xy i§’4J

XY -xY _ GRe b As o

&)= XY e Az

(238)

For x = O,we get the strain of the line element along the axis of
symmetry

(239)
and therefore (238),
A ds |
= 0] — ST
3()< éz() X dz ¢
p is the radius of curvature of the deflected axis at P,
Because d¥ = %;, it follows further that
g, = &5(0 — X Z:ZZ
(240)

€5(x) 1s only a function of x. Therefore, all fiber elements with
the distance x from the plane normal to the plane of symmetry
(in Figure 64 the plane through line PQ normal to the paper plane)
experience the same strain. The strain in the x- and y-
direction is caused by transversal contraction. Quantity V is
the Poisson's ratio of transversal contraction of the material.
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We get

I
£ )=~V &K
! (241)

g,00 = - V5 &
(242)

Considering infinitesimal distortion, we can write the strain as
follows {(putting €3(0) = €).

b O/tf’
= T . r
D= E0) = - VEX) = Y(e-x ) (243)
= 3 - — fe = - dﬁ
) e dy
D= = &R (245)
By neglecting the shear, we obtain
-D,-_)_ = DZ3 = ‘D'3 =0 (246)

The variation of energy is

’ cn v (1) :
M DD [D ] dv
A 2( [+ ,)I) J{ d dd e (247)

Putting (,11)‘: dﬁ.({xdg,

0 B
(N T ,
S A = 2 ) 532(") dlx df} a7 (248)

L
0 A,

147

™ -‘J'..i S




2
(SA(Q‘ = i ‘SIJ [23209 - 2[5 5'30{] éx d'y cly (249)
2

0 AZ

~ Introducing (245) gives

« ?
SA(’)=$ g/ﬂ@/éz_ixf %4-%1(%)1) d/xﬁ(fy (250)
0 A}

. o . 4 (delt dy
§pel. g?/da/(i—lm ;{l;—H (ﬁ%f/&zupx,{%)w]
oA

(251)
Z

Performing the integration over x and y , we get

[ty = 4 o




where A and A are the cross-sectional area of the fiber and

resin in the cel%.

Furthermore,

5

xzdf)( 6‘(7 = I
A,

0
I

)<2 Céx 0/:1 = ._[
A

2

the areal moments of inertia with respect to the neutral (non-
strained) plane.

Because of symmetry

xo(xxo(y-.—. "

then (250) and (251) become:
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5/40)—— $ g—r j [EZAI + II(‘/’yZ oz (258)
h

T T ) i
§A = STZE——.l[é Aﬂ+ i (7/2-2/52/1 ]4’9 (259)

The equilibrium equation in energy form for a fiber resin cell will
be written, after introducing (258) and (259), as follows:

N
~£§47f’e} dy- )OS a

Due to deflection of the axis of symmetry, the projection of PQ on
the undeflected axis of symmetry, the length AE, will be different
from Az, the original projection of PQ. The difference AE - Lz means
the longitudinal change of length, 4w, of the axis element Az.

AW=A§3——A:& = <% —~/)A:11

Taking the limit Az - 0, then

dw = (g—% —l) 0(% (261)
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Because of (239),

¥ dE, os S ey =(1+8)n
3 - 23 = = = —
C£@% OLS sﬂ@g CLﬁ% %) f)

and combining the foregoing equation with equation (261) gives

dw = [(H— £) c«mf—] dig (262)

The total change of length will therefore be

£
s [fira -1

v
We assume that the fiber is restrained to the matrix such that the longi-
tudinal change of the fiber is equal to the longitudinal change of
the matrix. Therefore it will be

wg) = [5(17 (264)

and

(14 mg ~(1+f} da o

5

The solutions

g = £
¢ - e

of (260) have to satisfy equation (265),

151

e -




@ .

We consider the case Fi

and get the following equations:

¢
S [IAI}LEA]s +i[ +LJz‘ﬂ<f fI[J dg-o
(268) !

0

with the restraining conditions (265),

?

(14¢) oy =(1+f)
0

The Euler-Lagrange equations of this variational problem with two
irdependent variables are

Pe+R + A A (269)

6250’# /\(H—g)/h;“f“-"o (270)

where we use the abbreviations

Dl ciat 4 E%I (271)
Q- ETT 417 @72)
"Qz_EIAIFI>0 (273)

and the parameter A being the Lagrangian multiplier. Solutions of
the set of equations (269) and (270) must satisfy (265).




From (265), we can determine A by substitution of € from (269) in (265)

E"—E-A‘il‘ﬂ- dg = (14f) 4
jo(’ P P )mf‘% (1+f)

or

(274)

£
(r-2) /)c«ny Y —(11f)PA
7 -

2

A>u3270 Cii}
0

In order to give a physical interpretation of X\, we consider the
resin around the fiber not shrunk (BII = 0)., Instead,we apply an
axial force F§1) =F acting at z = 4. Then we have to apply (260)
with BII = 0 “and

v (ta) ) g
.._.Z /LZ Qgﬁ(% - (S(F/[(/vLS)my)——Jd/&)

The variational problem for this case will be

4
§[[areeseytRes v oy~ F o =0
0

from which we get the Euler-Lagrange equation of the form (269),

(270) but A = +F. The parameter A therefore represents the axial
load of the fiber which is generated by the resin due to shrinkage.

We can assume A to be known and substitute € in (270) by € from (269).




The following differential equation in 9 is obtained:

If 2 A i ’> " C
— e — V2 2%% —" (275)
6270 EYEE: = v v
After multiplication by d%, we can integrate (275) at once, ard

obtain

__LQ% /\( )my + A’ Cme C (276)

We assume wl =0 at ¢ = wmaxl; therefore,

| 'S |
¢--N1-%) Pt G 7 e @) '

and (276):

#2221 B)(onp- oy )= L5 (e lp-enty)

(278)

(278) can be integrated by quadrature:

dy

/ (1) o= emp ) = A (- oy, )

(279)

% =

+ ¢,




IS -

The integral in (279) cannot be expressed by elementary functions.
Using the abbreviation

Zi—-—%(/——_?-)\)() (280)
— A?.
A = 53 >0 (281)
the integral to be determined is as follows:
' oA —
Flms f . 4 TG
g cny, ) - Blor-ip)
dy e
i f + T o
o Je ot o)
with MBCf = /"‘2 W?‘.Zi follows:

3 . / / '{y
2'/?‘/-& WMZ%—“%Z‘§K)+Z£(OJ"Q£*M1%M—*)

a2
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We use the abbreviation

o= 7o Yo

and
%: /é /)’V\'\z_%“ﬂ'x
a_7 h
2

Furthermore, we substitute

M%:\/TM %M:W
- 45 |y

/S(1-5p)

and get

. &
i [V(/-f)f(f-rf)(’+? #5)

Now we use the substitution

j ] w(i+9)
I+Zc}/—— C}//W

156

(284)

(285)

(286)

(287)

(288)




dw
2\ %—. - A V(/—w)w<l+27/—-w[7/“rr0(l+cy}])

+ C, (289

Finally, we substitute

W = /)wl&/&

dw = Z\/w(r-— W) dat

p | dd o
) X _ [ qtp(ite) -, ’ -
V(i ,@(14—27) L/ ,/+'27, 7] pontnd (291)

The integral in (291) is an elliptic integral of the first kind.
Its inverse functions are Jacobi's elliptic functions. From (291)
we get




M%-:/m[(s—f,)\/(-;z—l)(w??) J (293)
P §(1+29] (1t 29) ~7E
ety i Ed

. Zi
Solving for V2 2%% > gives

W = (294)

/)\\/\42,_({_ _ /7'\««"19(/#‘7)

 r2y g 4029
P P

or

with

<GB & F o,

[+q = T TS

follows (295)




Parameter k is from (292):

_ e
0 = ro Uhrom / [+ 5( C‘/’L/fm() (298) ]
L /_QE{:MZMM '

We need the inverse function of (297), which we get from (294):

\ "/Z &me

: i_ =
= S ———
m {(Z -Z,)}EJ: 22 ; || —2 (299)
fran  Tamox a 7 :
Z 2% (enrtont,,)
At z =0, ' = +mmax gives sn [ - afi ] = +1.

Therefore,

K (k) is the complete elliptic integral of the first kind.
Therefore (297),

7 |
= = Y
,M%=M{Q‘X+@ i i (301)
z ~ < mﬁ““i——mzﬂx+@
ot

® is a periodic function in z, with the periodicity z,

4 K

Z X
w




(302)

2, = o K&)

z._ is the wavelength of the waving fiber under internal stress.
F¥om (296), one can see that the wavelength depends on meax and A,

In order to find the deviation T of the deflected axis of symmetry
from the nondeflected axis, we have to get the differential
equation for T first.

It is

de gy Ay
dy  dr dy

Since J—SL = \( and using (239),it follows:

=) :(I+£)'°".’“P (303)

Substituting € from (269) yields

= = (/ /A (304)
*;[’%L‘ ( P p ) Y

which is the desired differential equation for T,
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We obtain function §1(z) by quadrature:

&
- R _ ~ :
- flpbeden
v

sint® and cos® are known functions of =z according to (301l).

We are now also able to calculate A according to (274). The
calculation of €1 and ) depends on the calculation of the following
four definite integrals:

/myf ty = L - Z/MLi dy (306)

\//ywwfé‘ E //rm m 4/2} (307)

Jg,: (,452</0(? £ -8 mzzd@ //JWI’VQ(/‘L (308)
: 0

l

J{’= /)—%27&0[3=4/M% ki /B‘YWMM
)

v (309)
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We have to solve the following four basic integrals:

oo

ya
;T =) \//:Q{~1 ¥y 643-3? 0(%
u 0
.
4y
3 [t
J
and
T4
)

0

For that purpose,we have to evaluate cos% from (295). It is

[+dy -fmf[Zx + kj -(./+7)Pm~2@« +K]
1+2y g i zx +k]
[+, [/ ~ (//?)Z,PJ v m"‘[zx-fkj

2 - gmifex 1 K]

S
2

—
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(310)

(311)

(312)

(313)




Because of (292) and

duz[zxwL Kj = |- lkz/asz[ZX + kj

follows

— &DM
oy s [23@@ |-

Z 4("— ‘ff»w) 2. K
— 12X+
[— end
M
(314)

All integrals JI’ JII’ JIII’ JIV can be found in a closed form.
It is

L_ﬂ / ot (ptic) Az -
S

e
NGgr2g)e [ Anenen)ontener) oy

% I—f?;‘i— &rt"(xz+K/)

(31€)

\//ﬁ S (7121Lf(> dz
[—i Sm(vrz-;-;()] o
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[(l +q,),o] \/I+2 S (7c2+K) dmn(nz+ K>dg

s *

o 7
(318)
- We solve (315) first:
£ ¢
T ___,("’“}))i [ f“‘ dz "
T : 9 - [ dz
s T T2y Sn'(xz+ k) f ]
° 7 J
K43
- 'B'(I'f‘ ! d(—
- %) [if g A= -
4 T THzg
K /

For the first integral we substitute

m ]t =\f-eli- )

and get

Ktdn sn(Krdr)

f L dt

X =iz ¢ (" {)\{(zt)(/ Kkt

164

R —

-

ke




D amii ambiacid ot ol i

= ”(&Yt(KaL%»{’)/'k/ —T-‘%Z.?,>

~TT(1; k

(320)

- 5)

I
TR :
TT(t) k) f (Hen O\ )=

is the elliptic integral of the third kind.

The integral (319) therefore is

”&'EW(', /"T%fz;)—-/é] (321)
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Next,we treat the integral JII'

HYere we substitute cn (kz+K) =t

with
i dt =-X /M’(XQH/\) dm ()--inrK) o2
E ﬂvE(DLQ'+V\'):}_M,,2()<,2_+l/\>: /»76?'
We get

cn(n+K)

- - = at
J;,r - 'xq.\/P(’*‘)')(’*z%) /%i e

J =5\ E0r2a) M(%\/T%)/o

en(i1x)

=TV (v 29) esckow(entent [T

(322)
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p i _— P maTR—

! The third integral will be solved by using the transformation
S ('n 2+ P\’) =1

= )(,, KT) dz

]

srptl+K) |

- L ol t |

331 %[. .jkﬁﬁi t] VQ/{)@—tk‘) |
(323) ;

Since the rational factor of the elliptic radical is of even power
in t, we can rewrite (323) to bring into a more common form.

But first we have to expand (323) into partial fractions. Setting
for abbreviation

Y = HZ (324)
/+2%
we get
‘ Sn(K+xl) y
l+q\2 t'dt
J- = A/, =Z = (325)
m K{p 9 ) (I'-h"f ‘)L\/(/"t‘)()"k”f?
Snk

Because of

[ +? 2 . L .y = 2
[ — n*t?* ] n‘.’ | — nti‘- [ |-n*1?

T (/-—»ln*t‘)" ]




x 2 e " = — L 4 ki LAl Lo
o T S T e s T L ’ . E |

follows (325)

sn(K1z¥)
3 0 i [ +q 2 ot
JI-” e (1 ? ) {mk\/(l—-t‘)(/—k“’f”)
sn(K11ed)
_ Zf it
MK(:— n* )\/(o- STLED)

sn(k+ m(’)

dt LT ALE

L2 [T”I(sn (o) =, k) = TT( =7 k)]
A

sn(r+x8)

N i at
x| (1=nvt) Vi-t)0-kt)
Snk (326)

In order to evaluate the last integral, we shall derive a recursion
formuia for this kind of elliptic integral, since all elliptic
integrals can be reduced to the three basic kinds of elliptic
integrals and raticnal, logarithmic, and inverse trigonometric
functions in t and the elliptic radical W'/-t?')(l-ulf{'l)

168 1




PG R T

First we expand the polynomial
71": (”“n)(”“"til) = /“(/+k‘)i1'4—k"z.‘¢(327)
(/-—-m"z”?
in the power of (/ - 1{2)

Setting 2 - €, then

_ 1) ‘_i_v_l(..’_)(i—n&i,)
‘VZ__deV "’
2 4
| k*  K*I-n J=n*+ n
) == (N ¢ s
d % 2K "= (14 *)
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We use the abbreviation

nd kT = (1 +k")

= 329
n1+k*) = 2k
A, = e (330)
1
A, = _;_4 (331)

to simplify (328)

?1’? Ao t Au('"”wi) d Az(’"”"'{u)t(ssz)

Dividing (332) by y (1 ~ n2t2 )v we get
4 = _A_.?__.____ + A'
T P G
+ Az
(,_h.“tl)vv"l- y

(333)
We define the integral

J- f oy = - 1ofi — (334)
(1- ) y (1=-n*E) =)= k*17)

and integration of (333) is therefore
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= A, J, ""AIJ:"‘I J"AZI'Z
(! ‘f) T

(335)
The lefi:-hand side integral we integrate by part

y ot _ Y / (-v)(-2n*t)
ﬁ-n"it)v ‘: ‘t )v (, n‘t vt 7
e ot
v
Evaluating (, g i ) 2\>I (336)

L

dy¥), gt d(-nt?)
vy ol ol (1-n*tY) oLt

= (A, + 2, (1-n* %)) (-20't)

and then (336) becomes
y dt __Y t _ nti*
f(;"‘n‘-f‘l)" ﬁ—_n‘t‘ v ["_na.tz)\l-rl '\i {EV[AO
| vy T
FA -7 £ Al *)j

- A, (;-n‘i‘) - 2A;(a—-n‘t‘)z} at
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‘or

Y oLt .Y t _ at
(/"n"-tl)v (}"_ nztz)v (,_h-,tz)v-'-ly {ZVAO

FAy @um (1) + 2o=) A (1oL}

at
+_/(’-—n‘~-[*)vy s {ZVAO + A, (2v- l)(l—h""i")

+z(v-:)Az(z-n*t‘)‘}

.yt
- (I—h"t‘)"

-l-(A,(Zv-l) = 2(V")Az) \Tv-, +(2v-2)A, J—v-:z

(337)

- 2vA, J:,+,+ (2vA, - A, (2v-1) Jy

Replacing the left-hand side of (335) by (337), we get the following
recursion formula:

2vA, Jyey + [(’_ZV)AO + A:(ZV"’>J Jy

[-2v-1)a, + 20-0A] T,y = (29=3) Az vy
y t

(= tr)Y @3s
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- T [ {5 T AT O — . -

WP DT Ty

Because of (329), (330) and (331) are

2vA, = “"f,\:: (n¥+k=n*(1+k?)) (339)
___ZV—’ y7 z 2 2

VA = AL T n" =-2n"(1+k%) + 3k
(ZV ,)(I A) n4 ( ( ) (3(%)

Q(V——/)(AZ—A,): 2(v- ’) (3k 1’(l-fk”)) (341)

-3
~(2v-3)A, = - 2:,4 KL (362)

From (338) we get our integral in (326) immediately by setting v = 1:

2AT, = =g + (A=A T — AT

or

_{‘1 t A o A ! A L
J; = 27(1-..)')111') Ao + 2 A J-l — ZA -/
2 ° (343)
We have to modify j__‘ - I s M""tb OLt

into the canonical form. We get

J_ "—iL ) ’:: | — k*4 Lt
7
ot

- 14k ¢ ('——— F(tik)

(344)
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E (t, K) is the elliptic integral of the second kind. Now we know that the
elliptic integral of the third kind is

J— = n(t/'—h: k>

!

therefore,

at i
27 (=t ) Yo- - k) |
- __Ej t n /40"

-2A9 (l" M'L‘t'b) ZA. ' W(t/ -h /k)

- £ [—,; E(tk) +(f-%5)f:(*ik)]

2A

f (345)
‘ From (329), (330), and (331)

Ao —A, m4—5k’—2n"(l+k’)
| A, ntert—nt(Itk)
A k™
AO - n4+k"_—h"(’+kt)

and (345), finally
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(,’nmit)IV(l"tb)('—kl'f;-)_: = 2(/_;4%")(1’14+/\’2—H"(/+k’))

e

f At nit V- (1=K

hi- 3k 2a%(14 k%) .
t:~-n k
1— 2(H4+k"—h‘(/+k")) 77( Y ) )

h'l_

T2 (n?+ k>>=n(I+k*))

E(f;k)

z >
kK —n

_2(”4+k’— n*(iti?)) F (i,'k)

(346)

Finally,we are able to write the solution for J

(396) as follows: pr from (326) with

jﬂT = (,o _I_'f‘_'}i)z {{ - nt st (K+2l)cn(kenl)on (K 42 €)

2% (1 =N sm* (K198 )) (nF+ b = ,,,'-(,“‘,‘))

3+ Tk =204 k)
2% (n* +k*= 01+ k™)

- n(’;—njk)]

-

n

— 27{(}1‘7{—1(1'-—”1—(“.‘(:))* [E(S“(K‘*'KZ)/"()

- B k)_]

[U(Sh(l(ﬂcé); -n‘,‘k)
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(<=n") _
T 9% (n"+lr"—n"(l+k‘)) [%f 213§ KJ

(P G¥)"
J—m =2[n4+kz—'lﬂ"(/+'k¢)] {Z(Zyﬁ,m’b- 2)41'/(1.)

| 2”..4 sm(fo()cn(K#nQ)dn(K-H&é)
‘ + (A (I-n*sm* (K +xd))

...7_‘('. (3n4+ 7/\‘1""ZHZ(I{'k"))[W(‘W(K*RI);-M‘: k)

_n([ -n k)].-—- [E(S'"(K”"e) k) ”E(I/.k{}}

(347)
We must now evaluate (318), which is simple to do.

We substitute

m(nzH() =1
with dt = - sn(rz+K) oln(vcz+K) n A7
E and snt(nz+k) = | - A=
so w2 get en(kind)

(t*—1)dt

/
‘ng_ +‘f P] \/1+27 [_'7,1_2_/+t2‘72,
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Cn(K4x()

[0ra)e] ™ [1124]" f it

ng t* +
en(Mtaed)
i et |
z [ -/ +t"‘]zf
(348)
After some transformation,we oo for (340)
3/, o'/
;r _ [ a)p] " [1+24] [ 4 :
) %q"(l-—m") ,_n,[l* -27,,1].
- nenlk+xd)\ 1 cn(kixd)
o ( V [=n* ) 2 |=n*+ cnik+nt)

or with (324),

N 2

e (& en (K +t))

3 cn(r+xl)
i D

(349)
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After this rather extensive evaluation of the four integrals, we are
now able to give the analytical expression of the deflection coordi-
nate T of the deflected line of symmetry. According to (305), (307),
(309), (311), (313),

§o=21- %) k@) - F[1%) - 4 Tp2)]

R +2
=2 (I- _;:"')\71;(2) + 4—,2— J;y (2) (350)

We can now express JII and J... explicitly by (322) and (349) and get

v

R+2 V 112q.)
b 210 £57) Yeage

__375,}_ (szz}iﬂz }x coviliis, (\[-I—T'g—_' M(K"I'?li‘))

22 )
- 555 4o eae

cn(h+nz)
[-n* + cnt(K+xz )

or

-2
b= 2 VE(n2g) [S57 el 1]

asctin (TE on (K +x2))
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A i cn(K+xz)
- 2-1'5' i~ .‘}E- \//o(l»n},)(HZ?) ,

~hn* + c»"(K-r'.n:z) _

(351)

(351) represents the deflection curve. The periodicity of this cuxve
1s the same as the periodicity , z, (as found for ¢ (z) ),in equation (302)
We shall introduce the original physical parameters

-—

l-n" = =
Q—ZFMcf .

(352)
€“=ff~4l= PR - - B2 59
12*2;’ e)_l . Z(E;ﬂ_,) (354)
¥ = fg—";,_"(“@oc,om,.) P-g-2 (I+Q3?MM)

& | 2(P-R=-23) (4
P—T?—A(Z—m%tx)
/+27, * P-r— 2 (356)
I 3 :
%:\/Z\.'Vm \/F’-—R--Qc“ra:io,‘,u,_,(7 (357)

We have to determine ¢ and A, ©
and (262): T =

x can be determined from (304)
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d ) 5 jed [
O= — (=9~
g 3 %(2’0) - ) fm %(2»0)'

> 5
and because of the assumption €& & K 5

/t“”‘ tfm _ (! ——?—)~ ‘A_ e /’{M‘fmm

— P Amax
( ‘/‘/“1} O Sy i
|
§ _/?_ = an 5 Z)_ZK - Y
L 2w (B o
a
or p ,P-,R ’P / g
e A T

Then, )\ is determined by means of (274), (306), (308), (308), (321),
and (347).

|
{
,
' P It is
|

pry[1 = §T )] — (OP

A= 2 - (360)
i =7z J)- 7 Jg (X)
| In (360),the expressions (321) and (347) apply. (360) is a transcen-

dental equation in A, since J,. (4) and JI (L) are functions of A\.

In order to evaluate A numefically, an Herative methed should be

applied. 1In order to do this, we have to approximate the functions

J. () and JI (L), so that the first value of A becomes reason-

'agly accurate. “But this means that (321) and (347) must be specially
~ investigated.
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First of all, we consider that 4 is large, such that

EAVINGY

K
or ) '
L= (AN= = K. (N-7) 2., @s1)
where N 1is a large integer number (number of waves!).
Therefore, :
E(sm(ktnd) k)= ANE _— |

where E 18 the complete elliptic integral of the second kind

ﬂ/z_
E = f \ﬁ— k‘s.‘m‘z,' elep (363)
©

Similarly,

K+ xl) —n*, kY= 4N
W(SM( o o) )/ ) K \[(/—HS"MT)V[_[{“”? {

(364)




The complete integral of the third kind ™ ( - nz, k ) can be
expressed by K (xik) and E (xik) as follows:

AR .
SRR O R [E(% 0 Ko

n
- F(z;;k)[(k)]
(365)
for / n/{ / k/, which is the case in this problem. For N 1, Jq 8

o iy (4N-’)¥ n n .
‘].'—C 7,("‘7') 4 \/(l—-n")(k"-n"’)[E<T°—I'k)K(k)

| - F(5)E (k)]

(366)

l The integral (347) is

I J;- (r '5) {(4N—;~)K(k)(—n"+m— 7h")

2(nTs k- n(I+k))

' oy (4N~ "
~ (3n* + T k™ 2n*(Itk )) \/((,_n‘) (RZ: 5 [ E(E k) K(k)

~ F( k) E (k)] -@N-/)n”f(k)} (367)

Therefore, (360)

= (368)

METED
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with

U3, @) = = (R+BP)
e 2n -
(P-R) ‘3'(’“}) V=)= n%) [E(Tf:;’k)

£ (k) |
- F(&jk )K(k):]
s o0
V(%‘f'“‘"‘): I = nd k- nr(ltk?) {+n +7k" nz('—@?) A
| + 3n?e T 2010k
+ 2(p -?‘5‘)[ e g e e g-(n,) -2]
n B n \ E(K)
W[E(E;k)-(—'{z;k),«t}]
From (324) and (292) Zfollows (370) 1
“ - ARG 0o
V(=) (k=n) I+24 'F° (a7) ﬁ
kl
ITWJ; o
INCAE 214is7) A
/_/_27/ (373)
gL g; %l
" /+2?, 2—"}16 (374)
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e o e

£l L g 78
w7k z(’—K(kl) 2 (’ K(k/)f +7~"‘: (375)
mh K (1= 18 —( +K3)+m>+ 'w:
g 1s with (280) and (281)
e s
g = —Z (376)
(= 2(P-%) =
A
It is - __‘R > /\ ; therefore, ? </
and
mt = (377)
" |
e x‘p (378) |
P-R - R
/$11 o :li 5 _JQEL . JQ_ - ézé______l- = / x EE(]Z____Z
=== > ' 379
2 ~ o ) M2 3/ )\ A (379)
Therefore,
4 Z_ PECE
w7 k- (0 K(‘" e 1 (360)
et =17 %)
Bty 7k'i’-2h"(’+k“) SnTe 5“1—— 2(1+k™ 7
R T ML Ay Tr
ENpP)

V3, Guus) =1=4 5V [ENE @~ F(V% VP )»«r“]
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U uen)==(R +3P) = (P-R )M [E(F; Vi)

P3P
(383) | 1
It is .
oo "é v
F(So: ).—Z( v )(" kt) jzv (‘f) (384)
V&O i /
Vv
E (¢,K) Z ( )(— K)au e ) (385) '
with the recursion formula
A 2v -1 | o
2“(‘)")'* sz 2('-f) = 97 S"'MZ if s
: (?) (386)
V= j ? (387)
o / / .
oty | BR T R TTRERY
V= 2 7
' 3 a
Ja6r) = - J2(¢) — o= Fimep ene
e > L !
"72¢% %%”M?Mﬁp — 7 P Py
ve 3
8 & . L )
TORE SRR SRS
! S
¥ i ?wcf
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For /;Z::VF small is E_(/@) 74 K(K) M%T:
and

E(lr)
E(¢ ip)-Flg /j‘)x(v,a) r

Z( K)Jw(?) ‘ )]

(v) (zv—-) () V;“-)’

)= 2(-3)
be3) = Gr3)0-3)]

()= (3) = 99! gy eyt - 1]
Gy

Therefore

E(’ﬁo,zk,) Fl o, »/C)TE(%

*lp- Egfe)(Eck)- k(k))
— ...34.[%.([(}() - /((/() + Zﬁ‘f]Sm @ e
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arnd for small Y and small k
\

+ 3
E(‘f,-le) F(f,K) K(k) —é—ksp (388)

Therefore, with (f': Q‘% x 'lgoé ) K:Wr;

UG, o) 5 = (R¥2P)+ (P-RIE(E (-3 3(E )
| = - (R+AP) — po V‘-’(P-R) (389)

V= |+ %PV’; J (390)

g can be approximated by

[ q . Lzm
| rEgEE)

therefore, (368) with (389) and (390)

I
I .
! e e % ol R (S
, s (R+AP)~ 375 (P- R)* 2%, Lo S
4 A= »
' + ksr (P R)'h’ 8144 -f—zli
Setting K% = X, we get the following third-order equation:
/
' 3, .3z (P-R)” | FE-R
j ML .
P-R
! + ‘54{5 R+ SP)(P-R) =0 (%)

S"M 3 MZ. Lt 4
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For small wmax,the first and third terms can be ignored, and we get

=)= (R+aP) o

as a reasonably good solution for the eigenvalue \. The eigenvalue . {
A does not depend (or does not strongly depend) on wmax'
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E. BUCKLING OF FINITE MULTIFIBERS IN A MATRIX UNDER AXIAL LOAD,
THREE-DIMENSIONAL

k FOR THE MULTIFIBER REINFORCED COMPOSITE WITH THE FINITE
MATRIX TREATED AS A THREE-DIMENSIONAL CYLINDER

The displacement components of the matrix, in terms of Papkovich
funcrions, in cylindrical coordinates, are as follows:

§ =PRemé + P sind - 4(, 5 [)L(}Dcm\wfs,nm

(39&)

" = “Psinb +Beest - 7555 M[MF%HBSMW}’J

(395)

R MR SN o b
55 B S b%{h(ﬁm4’+E5"l4§)+RJ (396)

where Po P1 and P2 are harmonic functions such that

PR= VR =Vph=o o

2 .
v is a Laplacian operator in cylindrical coordinates; i.e.,

V=

2
5 + 9 (398)

i /8’549




The six stress components in cylindrical coordinates are: |

-—-zCr (—%coﬁ +%%sm&>) |

II

b (P ) [(pead +]>s:‘n&)+FJ

(399)

I &

%= "z‘m(m%%Q[“P%H?Smbﬂfj

0;3 _2,__ ()) V’ L)[)L(F,wbﬂis:n@JrF

(401
X

G,;_ = G [(6454’ pv> ‘Siu«{’f‘)?-}-(&f@j_ +c¢34,%)7>]

'f' %) | 32 /?.(, b +F, sin
3035 (v i) [P Peot#Rs E]
0, = G"(cod 2l tsinb2l)

zzﬁ“‘/—w im [ (Pestt Rse) R s

o*=G (m&?ﬁ —sin4 2B}

23

zu-p") ;Lmz [/L(F‘mﬂp Sind) *FJ"‘“’
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The product solution form of a harmonic function in cylindrical
coordinates 1is

[ T (k) + Kyl “n@]‘[ Sin(me) + e (m 4>ﬂ' [an Ca R CB(@,2)

(405)

In considering the boundary conditions of the present problem, we
choose the solutions of Papkovich functions as follows:

P = [A,I, () B, K, (af.,/z,):{wc#Siu ()

(406)

p, = [C, I ) +D Kz(q’.,/»)J e 04) Sl )
b [Ez .Io(o(n/*—>'f‘l:z }’(0(0(“&):’ Sin (0(«73) (407)
P = [ G Iz(o(“):_) +D K, («, )zﬂ Siu(24) Siuee)

(408)

Then

R cosd + psme = [C, I (k) D, K, (i DHE Tt
i o KO(O(“’?-)] Ceozd S )

(409)

“Risind + Pocot =[C, T () £D K, ()-F Lub)
~F K, (s ;L)J\s.‘wsi«co(.(i‘s)

(410)

191




| —— ——— —w———-—m

Substitutiorn of the foregoing equations (406) through (410) into

equations (394) through (396) yilelds the following solutions for
dgplacemente'

= 55| &#9(C, L) + D) K, )
tE, Lk +F K, (o«m)]

o [A'J:,/<0(t17”) + Bl K,’(O(M /L)J
‘/{ C’ _T2/ (e, /7) +‘D’ Kz/ (, }L>+E, _1;/ Bon)
W K, (xu)L)J} CBé SinEd) @)

8" = a5 |4 (AT + 8K )
HEALD[C L 1Kt
-4 [E T @ tF Ko(du@jj-

-Sind Sin (°(n29 (412)

& =5 { A L) 1B K

m[ C, L) +D, K AHE T, ()
+F Kol )J} cw d o3 oG2)

(413)
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§, =& emd —§Toud
+2[C, _Iz (o!,,a>+D, K,_(o(,.a)J
~26- D [ELeMFREY] |
HAT @) 18,K )
2] C, Lot £ DK eaYHE Tl
+F K, (uuh)Jj Sin (042)

to% { £ (AL 18K )
+80-[CLEADK (A

~[A TR 1B, K/ en)]
A (SRACRES TR L
1F, Ko ) ] featepysine

(414)
where Io(O(")L) == i )/
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5; = \§'IsSl‘n<\> + §ZIC,¢B<F

A 5?0-'-»'){ [ A L et + B K, @)
+8(-2D[C, L) +D 1, )
~[A T @0 6Kk
~h[G, L)k CuRTE T o)

+E Ko, h.)J} Sin(zd) Sin(o,2)

(416)

.5: — \i:n (417)

The radial stress c{ll: and shear stress oLl are found from equations

(399), (402), (406), 1 t0 407, ~ 12

g ={ 2G [ C, L) tDK/@h) +E T/ (1)
K )]
+2%j§5 = (A L) +8 Keur) A TT)
— (AT, D)+ 6 Kwn)
t+ A{C, Leuk) +D,K, (oA
+E Lo+ F K ok))
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HH{AT et AT
- —SLI( A I/’/("‘M}‘) t§ K///(“”/L) +2E/ME2} .

. Cas & Sin (o4, %) (418)

b4 2 /
e
B [ K o i 0ok
to i Il +(20%) T+ h T}

' Co3 <PSM((>(.,:Z:) (419)

where

I =C, L) +*DK @HTE TATFEK @A)
I'= C IZ’ CORN) %g’(o(n/w E,l:(d«h)’rF, o

and

I'= C Lo +D K + ETEAFK ot

(4620)
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Equations (414) through (422) contain six constants (Al’ , Cl’ Dy, B s
and F ) which must be determined by boundary conditions. ese conditions
1nc1ude the continuity of displacements and stresses at the interface and
will yield six simultaneous equations with six unknowns which are hardly
amenable. For simplicity, it is then assumed that the radius of the fiber
is much smaller than that of the composite; the three coefficients for
modified Bessel functions of the second kind will be automatically dropped
because of the finiteness of stress and displacements at the neighborhood

of the origin.

The boundary conditions at interface r = a to be used are

=§ =§ siultr)

H

ll

5.
£r =5 =
§ E:-: O (423)

Substitution of equation (423) into equations (414), (416), and
(417) yields

¥ gy

| E - g(/.plﬁ) [ ("(n 9t L "(n“)] A
| +[ 2,69 + A L))
[ T ta Tl Ef =t

n
(424)
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[b].' T (ot a) -_'[,’ (o(ua):iAl +{8 ( /")}){(04,6) —alj@a 9)|C
~[aLE)] E, =0 .

and

A' I,(dna) + C' Qa .E(O(M) "'E, QID@("“)":O (426)

Solving these equations, we can obtain the solutions of A,, C,, and

I 1 1
E1 in terms of §1n.

The denominator of coefficients A,, C,, and E, is designated as 4 ,
15 58 1
and is written out as below.

A w== =2 { (I-4P%) I:(m,a) I (3

-[ 2(3-42) +°(ni{—-l;(a<na)l/1(d"‘9

A

+ (Xn ) _Ij(o(n‘a) —?—.:[,3(0(,1 a)\} 427)

The results of the coefficients are

A = 5‘1’-‘_\% { 2SI, )4l Rl

~2 Ilz(o(" “)} (428)
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and (429)

r

— S { ~(oty8) T, 60u8) —2(3-42Y) T (@, 0T 6,0)
"’ Il//-*P) +a( Jl(o(a\} (430)

The force per unit length applied by the matrix to the fiber due to
the normal pressure and circumferential shear at the interface is

27
f = (07, cas ¢ —~a, sm+) AJ‘#')L——CL
(431)

By substitution of equations (419) and (421) into (431), and the
identities of definite integrals

v 2 _ Sinfzd)
J‘SM R T % . 4—2 (432)

+C [ ?‘L((dna)l‘f‘ 4 1-7) L (eta®)
1407 Tt al )|
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"" E‘ [’q,_ (4, q)z.l; (06(4) "HPEO Q.l;//("(n a)]}'
- Sin (o) (433)

Since it was assumed that the fiber buckles on x-z plane, then

Ay = % _—_—_é (434)

Combination of equations (433), (434), (414) and (425) through (427)
gives the unit interfacial force per unit lateral deflection, k, due

to surface normal force and circumferential shear, and is resulted as
below:

R = A ; 8(I-2(227) () T (o)

}[16 (2= -305%e0a] Tlt,0)

~ 482280129 He-5P e
' _.[:( ln) _'['(o(n«)

4 [2(4 =227 7 (oa)
+8(2 —))n)(/"))rj(dn ‘9.-,‘#(0(" q)jj'
‘ Io (%) ——[,Z(d“ “)} (435)




s

BUCKLING LOAD OF THE FIBER

Combination of equations (72) and (435) yields

Pl — w1

_TmE [ 8 (- )(2-25609) T, &)

2oty (1-*H N\

Hie (2280~ - 35|
‘ _'['3 (¢n®)

= [4 (6-515") @ig) +32( H)I)(zﬂ_)j'-
. .Ij(o(M a) I ()

) 204 =200 (o)
+8(2-25)(1-2%) () ™!
tenar’ | T C) T, 4)}

(L= E" 2
F Lt (1)

where A is defined in equation (427).
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SMALLEST BUCKLING LOAD AND BUCKLING WAVELENGTH OF THE FIBER

Minimization of Pcr with respect to a i.e., BPcr = 0 (437), gives

8 “"ET{ 2 0 T tu) el Tt )
Tt I ed)
~[203-41Meta ot ] _I;(o(.p)jl}l(dka)j

mE" T
t 7 { (=4 PO, I (%) T, (a)

~[2 G-42M a1, QT et ) et
Fo20) T (o) o7 Tk, “)j‘

{ 8 (117 (259 A Ll $30 Tb)
. 3, (4, 4):{
— (" (%) T2 (odnt)

—3a [5))1 (o) —/b(2-" )(/-)})J%z(d"@'
[ L) = ) I o)
~8[(L-5) e’ | Tt J )
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438
— 0 (438)

This equation determines the critical buckling wavelength of the
fiber, 4. = 2Mjr;. After substituting the obtained value of «

into equation (436);, we then get the smallest critical buckling
load of the fiber, (1=}:r)min
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APPENDIX V

EXPERIMENTAL INVESTIGATION OF SHORT BORON FIBER COMPOSITES

Is. MODULUS TESTS

The specimens consisted of a laminate comprised of 8-ply S-glass
Scotchply tape (50% by weight), seven interspersed layers of approxi-
mately 2-inch-long boron fibers (23%) by weight), and epoxy Epon
828/1031 resin (27% by weight).

The specimens were tested in compression and resulted in values
summarized in Table IIL For comparison, reported values of pure S-glass
tape and pure unidirectional boron composite are listed in the same
table.

TABLE 111

COMPARISON OF SHORT BORON FIBER COMPOSITES*
IN AXTAL COMPRESSION

Short-Fiber
Load Applicacion Composite S-Glasg** Boron*#%
Max strength, psi 133,000 120,000 220,000
Max modulus, 106 psi 13.7 8.9 38.0

* Unidirectional
%% Minnesota Mining & Manufacturing information
*%% From Air Force sponsored boron work at Narmco

In ccmparing the short-fiber specimen with pure glass and pure
boron composites, it can be sald that the values follow a generally
logical pattern,which is obvious in the graphical presentation, Figure 65.




<]
o
5 uoiog
AT} TV
22
o
= (=] w
=] — @
=il ot
& L=
w o
) [
. : 3
S E o
oD (=] A
c Q
) c
v o
&
[7>] [72]
c
3)
uoaog %06S T
SSEID=-5 %0S =
o
@ <
=)
— (=
E o
b = | g O
2 A~ w.
a3 1sodmoy «
U+
19q1g-3104ys o =
pa3ie813isaaug e
(S I =
v @
“w o
ol
7y
88 -
i ®1D-8 e
11V \O
1 1 1 1 1 5
[~ =] =] o o A
iy = Lan | o - i
15d 0T x snInpoy =
| 1
o o
=] <]
o~ ~—4

um&mOA X Yya8uaaag

g




Based on this diagram, it appears that approximately 507 shor
boron fibers and 507 glass fibers will provide the desired 20 x 10 psi
modulus combined with a high compressive and flexural strength. 1In
comparing these projected values with high-strength aluminum, there
appears to be noticeable improvement of material properties as
summarized in Table IV.

——

TABLE IV
MATERIAL EFFICIENCIES ;
Conprspive Compressive | Specific Specific
Densit Yield
Material 1b/in Strength Mogulus, Stgength, Mogulus,
103 psi 10° psi 10° psi 10° psi
Al 7075-T6 0.101 65 10.5 0.64 104
Short Boron*
Composite 0.074 160 20.0 2.16 270
Improvement 27% 1467% 90% 2387% 1607%
* Estimated, based on Figure 65.

The relative improvement expressed in percent is exceptional and
would justify additional research, even if it resulted in somewhat lower
structural improvement than indicated by the preliminary test results.

2. FATIGUE TESTS

The fatigue test data of a short boron fiber composite were com-
pared with fatigue data of 7075-T6 aluminum (MIL-HDBK 5) and a composite
which was fabricated with a Scotchply 1002 resin and unidirectional
S-glass (FPL Tech. Rep. AFML 7R-64-403 October 1964),

The properties utilized for these materials are presented in the
following table.
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TABLE V
MATERIAL PROPERTIES
Density | Ultimate Tensile| Modulus
Katerxdial #/cu.in. | Strength, psi 10 psi
Aluminum 7075-T6 0.101 80,000 10.3
S-glass & Scotchply 0.069 160,000 6.1
S-glass & chort boron | 0.079 180,000 17.2

Two panels were fabricated with unidirectional short boron fibers
and unidirectional S-glass (single-end roving). The physical and
mechanical properties are given in the following table.

TABLE VI

PROPERTIES OF TESTED PANELS

Boron
Specific Ultimate Tensile Tensile
Nitial We, Gravity ng;e;t Strength, psi Modulus, psi
936 2.26 17.1 180,000 17.2 x 10°

The fatigue data for each of the above panels is shown in the
following table.
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TABLE VII

FATIGUE TEST DATA

Panel No. Mean Stress Alternating Stress Cycles to '
% of Ultimate % of Ultimate Failure d
B 30 +23 5.2 x 10°
L 30 +15 1.53 x 10°
935 30 £10 8.65 x 10°™
936 50 +10 1.03 x 10°
936 50 +8 2.63 x 10° |
258 50 £5 6.1 x 10%*

The fatigue data are also presented in Figures 66 through 69. Figure
66 is a modified Goodman diagram for the fatigue life of the short boron
fiber panels, No. 935 and No. 936. The curves are estimates based on the
data of Table IV and previous experience with other boron glass composites.
Figure 67 presents S-N curves for the aluminum 7075-T6, S-glass and Scotch-
ply, and the short boron and S-glass. The curves are plotted as a function
of the alternating stress (% of ultimate) and cycles to failure for various
mean stresses. Figure 68 is a comparison of the aluminum, S-glass and
Scotchply, and short boron and S-glass at O mean stress plotted as a function
of actual alternating stress and number of cycles to failure. Figure 69 is
a comparison of the aluminum, S-glass and Scotchply, and short boron and
S-glass at 0 mean stress plotted as a function of number of cycles to
failure and the specific alternating stress. The specific alternating
stress is obtained by the ratio of the alternating stress to the density
cf the material.

* Specimen did not fail.




@Panel 935 (11.4% Boron)
50} @ Panel 936 (17.1% Boron) .

™~ 10° Cycles

N
(=]

Alternating Stress, 7 Ultimate

10E

i 1
0 20 40 60 80 100
Mean Stress, % Ultimate

Figure 66. Modified Goodman Diagram for the
Fatigue Life of Unidirectional
Short Boron Fibers and Unidirec~-
tional S-Glass Composite
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